

Polychronis Symeonidis

ATC Athens

FEC4

Brugge, 8-10 October 2018

F4F+-LWA Experiment

F4F+ Cloud based LTE WiFi Aggregation

OC2 – STAGE 2 EXPERIMENT

Experiment Description

- Traditional base stations embed functionality in software/hardware for up to L2 of the OSI stack.
- Centralized baseband processing for each base station, taking place to the cloud, contrary to legacy setups.
- NGFI: Six different splits of the base station functionality have been proposed.
- Depending on the point of where the split takes place, different requirements are posed for the fronthaul interface

	Interface 1		Interface 2		Interface 3		Interface 4		Interface 5	
	Bandwidth	Ratio	Bandwidth	Ratio	Bandwidth	Ratio	Bandwidth	Ratio	Bandwidth	Ratio
Downlink	174 Mb/s	1	179.2 Mb/s	1	125.2 Mb/s	1	498 Mb/s	3	9,830.4 MB/s	66
Uplink	99 Mb/s	1	78.6 Mb/s	1	464.6 Mb/s	6	2,689.2 Mb/s	36	9,830.4 MB/s	131

Experiment Goals

- 1) To develop the functionality for the aggregation of HetNets in the Cloud (stage 1)
- 2) Experimentally evaluate the functionality (stage 1)
- 3) Develop policies for the dynamic network selection from the base station point of view (stage 2)
- 4) Organize the HetNets based on the spectral efficiency of the network, through a Cloud based controller (stage 2)

Stage 2 contributions

FED4FIRE

Stage 2 contributions:

- Develop new signaling between Central Units (CUs placed in the cloud) and Distributed Units (DUs- RF frontend) for:
 - Advertising current network status (wireless network parameters)
 - Instructing DUs to change their configuration or network settings (e.g. number of antennas, MIMO, secondary channel configuration for 802.11n, etc.)
 - Instructing DUs to shutdown if clients are currently served by another DU for energy efficiency purposes
 - Periodically report their wireless network status
- Using the OpenAirInterface platform over the NITOS testbed

Experiment Setup

- NITOS testbed was used
- Open Source LTE functionality over Software Defined Radio
 (SDR) devices
- Off-the-shelf WiFi devices
- Off-the-shelf User Equipment for the tests

W.FED4FIRE.EU

Experiment Results (Stage 1)

- Two different types of fronthaul interface was used (TCP/UDP)
- Small communication overhead with our protocol
- When aggregating the links, the wireless channel capacity increases by over 50%

Experimentation Results (Stage 2)

Coordination Results

No transmissions

LTE-U and WiFi use channel 1

Coordination algorithm instructs WiFi DU to change its channel configuration (through Channel Switch Announcement)

WWW.FED4FIRE.EU

9

Experimentation Results (Stage 2)

Energy Efficiency Results

- Which technology/distributed unit to select for serving a data hungry client of the network (switch on/off LWA)
- Getting real measurements from the testbed was not helpful:
 - LTE runs over SDRs and hence consumes significantly more energy than the off-the-shelf WiFi cards
- Used stub values for doing proof-of-concept
 experiment
 - Switching off WiFi DUs in case the clients can be served from an LTE cell

10

Impact of our experiment (1/3)

11

- Strengthening our company's competitiveness and positioning in the delivery and evaluation of 5G solutions
- Development of network specific monitoring tools
 - Set of KPIs for the evaluation of similar solutions
 - Tools for characterizing the Midhaul/Fronthaul interface of 5G architectures.

Impact of our experiment (2/3)

- Deployment of ultra-dense C-RAN based heterogeneous networks
 - Network selection and switching, based on demand and network utilization in a single geographical area.
 - Charging policies for multiple tenants of the infrastructure?
 - Power consumption?

Impact of our experiment (3/3)

- Fully working prototype for aggregating different technologies
 - Tailor our media related products and evaluate them in large scale setups
 - Ideal case: 15 base stations in LWA setup and UEs maintaining connections to more than 3 at each time
 - Evaluate how UHD adaptive video streaming is affected

Feedback to F4F+

- Used Resources
 - NITOS testbed:
 - SDR node for running the software based LTE eNB (with splitted functionality)
 - NITOS node for running the WiFi remote unit (using off-the-shelf WiFi cards)
 - NITOS node for running the UE (WiFi and LTE connectivity)
 - NITOS nodes for running the Core Network (MME/HSS/S-GW, P-GW)
 - OMF framework to load images on the nodes
 - Traffic generators on both ends of the network (Core and UE)
 - Booking of resources through the NITOS scheduler

Feedback to F4F+

- Testbed is easy to start experimenting with
 - Documentation is available for the different functionality provided by the nodes
- Support by the NITOS team was provided whenever we needed
- Custom scripts were provided for running the different network components with an automated manner (e.g. setting up the WiFi AP)
- Overall smooth experience

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU