

Scaling NewSum -Big data Text Clustering & Summarization using N-Gram graphs

GOALS

Business related goals

- improve the quality of the solutions our product offers
- allow NewSum technology to expand to new domains/markets

Technical goals

Measure and evaluate:

- the accuracy of candidate clustering components,
- the effectiveness (summary quality) of alternative summarization components
- the overall scalability of the system

Challenges related to business

- Expansion to new markets should take domain specific characteristics into account as system parameters

CHALLENGES

- A product manager is not able to configure the product-related settings appropriate for each domain, so a semi-supervised process would be invaluable

Technical Challenges

- Define a process for evaluating different clustering and summarization components
- Scale the algorithms to process thousand of sources/articles

The experiments run at the Tengu testbed with the support of IMEC - Cassandra - Hadoop - Spark

Experiment set 1:

Measure effectiveness of NewSum's candidate clustering implementations

Related datasets:

Multiling (articles with clustering information) 6GB database of news articles

Methodology:

Run clustering on 2 different clustering implementations and measure recall and precision.

Automatic evaluation for MultiLing dataset Manual process for news articles dataset

Results:

Selected the algorithm with higher precision & recall

Experiment set 2: Measure scalability

Related dataset: 6GB database of news articles

Methodology:

Run the clustering pipeline using as input a) the algorithm from experiment set 1 b) a variable number of articles. Measure speed

Results:

Increased 5 times the speed of the clustering pipeline! Identified areas of improvement **Experiment set 3:** Measure effectiveness of NewSum's candidate summarization implementations

Related datasets: 6GB database of news articles

Methodology:

Run the summarization pipeline using as input a) configuration/parameter setting b) a number of clusters to be summarized. Recall and precision were measured through a manual process.

Results:

Implemented/Identified the process for selecting the algorithm appropriate for each scenario

CONCLUSIONS

POST MORTEM

What we achieved:

- Defined a process for evaluating clustering algorithms
- Defined a process for evaluating summarization components
- Increased 5 times the speed of the clustering pipeline!
- Measured scalability and identified bottlenecks

How Fed4Fire+ helped us

Patron's support was crucial to the success of the experiments
Provided a quick way to start experimenting with big data without having to worry about the underlying technologies
Funding allowed us allocate time to implement the algorithms and analyze

next steps

Next steps:

- Continue working on algorithm implementations
 Distributed N-gram graphs
 Improve clustering speed using blocking methodology
- Automate the set up of a pipeline in a cloud environment to be used in production.
- Release a domain specific product related to Blockchain news.