e

Facility provider training

Wim Vandenberghe - Piet Demeester

CER May 7t 2013

Facility providers interested in joining the
federation in the future.

Fed4FIRE will fund two open calls for such
additional facilities.

Will be launched in May 2013 & 2014

Open to academia and industry

Selected proposals: will join the project until the
end of the project

Max. funding 100 k EUR / proposal

b ¢

X)P ® iMinds

FED4FIRE 2 CONNECT.INNOVATE.CREATE

What is Fed4FIRE?

Overview of the Fed4FIRE architecture
Implementation of the Fed4FIRE
architecture

Implications of joining Fed4FIRE on the
testbeds

2
o ['F = iMinds

FED4FIRE 3 CONNECT.INNOVATE.CREATE

FP7 IP project: Federation for FIRE
www.fed4fire.eu

Project summary: Fed4FIRE will bring a common
federation framework for Future Internet Research
and Experiment facilities that will

be widely adopted by different communities
(experimentation facilities, experimenters, academia,
industry)

support powerful experiment lifecycle management
(including tools for discovery and reservation, experiment
control, measurements, etc.)

support key aspects of trustworthiness (federated identity
management and access control, accountability, SLA
management)

-
Oy 9™ iMinds

FED4FIRE 4 CONNECT.INNOVATE.CREATE

Reach a larger community of potential
experimenters through
common resource discovery mechanisms
common dissemination activities

Increase the technical possibilities for your
experimenters
Access to other testbeds in the Fed4FIRE community
Support of multi-testbed experiments

Lower your costs through
The adoption of jointly developed common tools
The participation in a common First Level Support
s Service
kg /P ™ iMinds

FED4FIRE 5 CONNECT.INNOVATE.CREATE

Fed4FIRE - general info

« Federation for FIRE = project coordinated by iMinds

* IP project = Total budget: 7.75 MEUR
- 10/2012 - 9/2016

Project partners

IIF¥ iMinds |T UPmC Z Fraunhofer 1E

1AA1 SORBONNE FOKUS

\

epcc Cizz= 2° AUOS [y
Q= BEBRSIS (e
YN

O
NIA‘/

06/05/13

Experimentation Facilities

EPCC BonFIRE
testbed

7

¥ o

Denmark
Ilea
Klngdom

Isle of Man

%/

S
Dudl

Ireland

- U U 1
> ILab t Vlrtual WaII

Poland

FuSeCo
playground

<

UNIVBRIS

OFELIA island armany,

|Lab t ereless lab

PIanetLab
Grid’5000

N

"ruuu"\f vv-\;:
\ Bosnia and
Herzegovina

@ Smart Santander
facility

Andorra =

i2CAT OFELIA
island

Pormgal‘)

L
%”‘\

% [Serbia
o

P Bulgaria
Sz 2

) Outside EU
U~

Sydney: NORBIT
testbed

Korea: KOREN
testbed

~
/

“Youtside EU-

]
Ukrainey

—_

Romania

Bucharest:

?c-m

NlTOS w1reless
testbed

Greece
NETMODE
wireless testbed

What is Fed4FIRE?
Overview of the Fed4FIRE architecture

Implementation of the Fed4FIRE
architecture

Implications of joining Fed4FIRE on the
testbeds

4
5 %e [J¥® iMinds
FEDAFIRE 8

CONNECT.INNOVATE.CREATE

The experiment lifecycle

Resource discovery

Resource requirements

Resource reservation

Resource provisioning

e Direct (API)
e Orchestrated

Experiment control

Monitoring

e Facility monitoring
¢ Infrastructure monitoring
e Experiment measuring

Permanent storage

Resource release

Resource discovery: Finding available resources across all facilities, and acquiring the
necessary information to match required specifications.

Resource requirements: Specification of the resources required during the experiment,
including compute, network, storage and software libraries.

Resource reservation: Allocation of a time slot in which exclusive access and control of
particular resources is granted.

Resource provisioning

Direct (API): Instantiation of specific resources directly through the facility
API, being the responsibility of the experimenter to select individual resources.

Orchestrated: Instantiation of resources through a functional component,
which automatically chooses resources that best fit the experimenter’s requirements.
Experiment control: Control of resource behavior during experiment execution, involving
actions to query and modify resource state, and their correct sequencing.

Monitoring

Facility monitoring: Instrumentation of resources to supervise the behavior
and performance of facilities allow system administrators or first level support operators to
verify that facilities are performing correctly.

Infrastructure monitoring: Instrumentation of resources to collect data on
the behavior and performance of services, technologies, and protocols to obtain
measurements in the context of a concrete experiment.

Experiment measuring: Collection of experiment data generated by framewaorks or services
that the experimenter can deploy on its own.

Permanent storage: Storage of experiment related information beyond the experiment
lifetime, such as experiment description, disk images and measurements.

Resource release: Release of experiment resources after deletion or expiration the
experiment.

Example of the experiment lifecycle

Resource
provisioning

Resource
reservation

Resource Resource

discovery requirements

\,

eShow me eLimit to eReserve *Make sure
all nodes that me 30 that they
resources have 2 nodes on will be
available in 1IEEE testbed X deployed
the 802.11n tomorrow with
Fed4FIRE interfaces from 9-17h Ubuntu
federation 12.04 LTS

- J - J S J - J

eAfter 10 s, start data stream of 10 Mbps with source node 1, after 30 s start
second data stream of 5 Mbps with source node 5.

Experiment control

. - eFacility monitoring: crucial servers up and running? - testbed up and running
M O n |to r| n g eInfrastructure monitoring: CPU load, number of transmit errors
*Experiment measurement: measure actual throughput, delay and jitter.

Perm ane nt sto ra g = *Store measurements on the storage server of testbed X for later analysis

Resou rce re I ease .g’trrl;legoer)‘(e’a;iitmhetr:‘teerg.at 15h already, release my resources so they can be used by

In this example an experimenter has developed a mechanism to automatically
create a wifi mesh network (multi-hop network). The experimenter wants to test
this at a larger scale, hoping to proof that the new solution can easily forward
multiple streams at the same time without sacrificing any performance.

Split up of architecture figures

e Resource e Experiment e Facility
discovery control monitoring

e Resource e Infrastructure
requirements monitoring

e Resource e Experiment
reservation measuring

e Resource
provisioning

e Resource
release

2

/P = iMinds

FEDAFIRE 11 CONNECT.INNOVATE.CREATE

11

Legend

Server

5

Embedded
PC (x86)

L EIICIEIICICD

Openflow
ROADM

BB

Virtual
Machine :

e 20E B

Ethernet %/

interface SOﬂWgre T
Service

Optical fibre

interface

802.11 —

interface

802.15.4 -

interface Ethernet link

Bluetooth = =—======-=-----

interface Data path

Software

defined radio

3G interface

Online storage

HTTP

€

B
Web interface

g

Command line
interface

Standalone
client

~>

SSH
SSH client

12

T
HTTP :
@ |
. |
4 I
R AN I
Discover, reserve, ,7"\:~:-~.____ :
provision FE SN T ——— |
7 | “ Sso | - Future reservation ~*
7 \ Sso | -, broker
! | \ o | o
| ~ '
,’ | ‘\ ~‘~§ | Portal |
! | A ‘~+(portal.fed4fire.eu) Tool directory
! ! \ P>
1
/ AN o — P T
I | AN I Testbed Certificate Identity
7 | N : directory directory provider
| — ! \ .
kA 4 | \\ |
1> Identity provider : \ I
7 | AN l
/ | Y l
| \ |
v | N I
| |
I [.
H Discovery, reservation, | Discovery, reservation, :
provisioning, release : provisioning, release |
I N, |
1 \,
[Grant access? : Grantaccess? s : i
1
¥ s { Rule.s‘based‘ C '
1 J {1 § =
t---- Rules-based i authorization r
authorization | !
: I
|
(¢ - ‘r r "—4 : I
r . 3 |
“ ‘N |
! o <7 ! Federation
| .
Testbed A : Testbed B ! facilitator

Here the components of the architecture for cycle 1 of Fed4FIRE are depicted which play a role in the following
steps of the experiment lifecycle: resource discovery, resource requirement, resource reservation, resource
provisioning and resource release.

The architecture is distributed with components at the testbed location, some at the federation facilitator (on or
more ‘central’ locations) and the experimenter clients at the experimenter’s PCs/laptops/.... It is a goal to add
only components in central locations to facilitate the use of the testbeds, but without being necessary for a
correct operation. We call these ‘brokers’, as they provide ‘brokered’ access between experimenter tools and
the testbeds. Compare this to a DNS service in the internet: a browser/application can perfectly use IP addresses
to reach services, but DNS eases this by introducing a mapping between a human readable hostname and
domain and an IP address. However, DNS is in principle not necessary in the process of reaching the service.

The following components (except the future reservation broker) will be provided at the federation facilitator for

development cycle 1 of Fed4FIRE (there are 3 cycles in total, cycle 1 will be operational in February 2014):

* Portal: a central starting place and register place for new experimenters

* Identity provider: experimenters who register at the portal are registered at this identity provider (as can be
seen in the Figure, there will be also identity providers at testbeds)

* Atestbed directory which is readable by humans and by computers to have an overview of all testbeds in the
federation

* Atool directory which gives an overview of available tools for the experimenter

* Certificate directory: for the chain of trust, there should be a trusted location of root certificates of the
identity providers

* Future reservation broker: to facilitate future reservations of resources, this broker can help to find the right
time slots and resources over multiple testbeds. Instead of an experimenter tool which has to query all
testbeds, it can do a single query to this broker.

At the testbed side, we have the following components:

* A component which does discovery, reservation, provisioning and release with a common interface: SFA.

* Atestbed may be or may not be an identity provider

* For authentication/authorization between users and testbeds a trust model is used, where identity providers
trust each other and specific experimenter properties are included in the experimenter’s X.509 certificate,
which is signed by the identity provider. So testbeds can do rules-based authorization.

* Atestbed can query/trust the central certificate directory to see which root certificates it should trust.

13

T
|
W |
|
|
m |
X |
Define Define |
scenario scenario !
\ |
Vo : 00 | - Future reservation
\ N 2 \ | @ broker
~ 1 |
\ ~, ’ ¢
‘\ ,"\'\ : ‘\ | Portal |
\‘ ,/' ‘;\ “ : (portal.fed4fire.eu) Tool directory
(W | v |
! | o L p
" m— 1T Testbed Certificate Identity
Experiment Experiment 1" directory directory provider
B control server control server :
|
1 |
Identity provider ~ 1 : |
|
1
R— : |
| |
| |
I |
[R [
Discovery, reservation, | Discovery, reservation, :
provisioning, release | provisioning, release |
! I
o !
vz | ok |
Rules-based : Rutl:s-'baf_ed S
authorization i | clLiinelir£1 e :
1
1 | |
1 | 1 |
r N r| r 2 B ,
A i A i | 4 |
|
| .
} -/ 2 ! Federation
| -
Testbed A . Testbed B I facilitator

The starting point for experiment control is that the testbeds or federation facilitator
should not run specific experiment control components, as the experimenter can
fully roll this out on his own. However the testbed providers could ease this by
putting certain frameworks pre-installed in certain images. Figure 3 shows two
experiment control frameworks each with their own interfaces and experimenter
user tools/command line tools.

In order for testbeds to support these different kinds of experiment control servers,
it can be of interest if all such control servers would adopt a common protocol for
resource control. In that case, testbeds only have to support this single protocol, and
experimenters can deploy any compliant experiment control server/tool in their
experiments. Such a common protocols has been recently released: the Federated
Resource Control Protocol (FRCP). It is adopted by Fed4FIRE, as is explained on the
next slide.

14

Get monitor data
HTTP

Get monitor data
HTTP

—_———————]

HTTP - <ol
Future reservation *
- broker
Ceéntral facility monitoring. |
(first level support) Tool directory
4
2,
4
Tesfbed Certificate Identity
4
Measurement : dirgetory directory provider
]
|]
e .
Identity provider ,/ | ,1
/ by
’ [}
4
’ [
/]
’ [
|
Discovery, reservation, Discoyéry, reservation, i
provisioning, release proMsioning, release I
/' | ,l
’ I,
b i
Rules-based - :&fg&iﬁiﬁ ‘ i
authorizatiorf RS 1
monitoring
| i i
- - Federation
Facility Facility .
monitoring facilitator

Testbed A L RERTERE

The following types of monitoring and measurement are identified:

Facility monitoring: this monitoring is used in the first level support to see if the
testbed facilities are still up and running. The most straight forward way for this, is
that there is a common distributed tool which monitors each facility (Zabbix, Nagios
or similar tools). The interface on top of this facility monitoring is the same: OML

streams (also see next slide)

Infrastructure monitoring: this is monitoring of the infrastructure which is useful for
experimenters but which they cannot do themselves. E.g. monitoring of switch
traffic, wireless spectrum or physical host performance if the experimenter uses
virtual machines. This should be provided by the testbed provider (an experimenter
has e.g. no access to the physical host if he uses virtual machines) and as such a

common interface is again applied in the form of OML streams.

Experiment measuring: measurements which are done by a framework that the
experimenter uses and which can be deployed by the experimenter itself on his
testbed resources in his experiment. In the Figure one can see two experiment
measuring frameworks each with its own interfaces (and thus experimenter tools).
Of course, a testbed provider can ease this by providing e.g. OS images with certain
frameworks pre-deployed. OML is an example of such a measuring framework.

15

What is Fed4FIRE?

Overview of the Fed4FIRE architecture
Implementation of the Fed4FIRE
architecture

Implications of joining Fed4FIRE on the
testbeds

2
‘o ['F = iMinds

FED4FIRE 16 CONNECT.INNOVATE.CREATE

16

\\ ~ ——~~---__~
~, —-_— AT
N ~~‘~ Future reservation ?'L
AN ~“~~ broker
N See N A
\ ~S | \.Eonal,/ N’
Y S~ J (portal fedd Tool directory |
\ ~(portal.fe ire.eu) ool directory
3, D

-y -
=t
- S
Testbed | Certificate © = Identity
directory I directory provider

~~-—————_—

" " CohSt
Discovery, reservation,
provisioning, release J
I
1
IlGrant access?

____ Rules-based o
authorization

Testbed A

Grantaccess? s

Rules-based - .
authorization

Federation
facilitator

In the following slides we will discuss the implementation details of the following functional
components of the architecture:
* Common interface for resource discovery, reservation, provisioning and release: SFA
(including Rspecs and the tool SFA Wrap)
e Security related components (all relying on X.509 certificates):
* Identity provider (deploy at testbed or use the Fed4FIRE one)
* Certificate directory (procedure for inclusion of a root certificate, trust decision
at the testbed)

e Portal: functionality, interaction with other components

APIl: Geni AM v3,
http://groups.geni.net/geni/wiki/GAPI_AM_API V3 DETAILS
XML-RPC over SSL with client authentication using certificates.

1: Allocate 5: Provision
API| methods:
1.GetVersion
[i 2.ListResources
N ' 3.Describe
r 4. Allocate
-) ' 5.Renew
6.Provision
2: Delete 3: Renew 3: Renew 7.Status
8.PerformOperationalAction
9.Delete
10.Shutdown
2: Delete
b 4 Resource state diagram
Sy 9™ iMinds
FEDAFIRE 18 CONNECT.INNOVATE.(REATE

(source: http://opensfa.info/doc/opensfa.html)

SFA has been designed to provide a minimal set of functionalities, a thin waist if you will, that a testbed can implement in order
to enter into a global and interoperable federation. An experimenter in an SFA-based environment can transparently browse
resources on any federated testbed, and allocate and reserve those resources.

Because of the potential for a very large number of testbeds, a global federation architecture faces a serious scalability issue.
SFA introduces a fully distributed solution in which each peer testbed serves as the authority of reference for the resources
that it brings, and each user community, along with its experiments, is represented by an authority (possibly, but not
necessarily identified with an individual testbed).

Under the SFA architecture, there is a separation between what is generic and what is testbed-specific. Testbed-specific
information is captured in a resource model, called a resource specification (RSpec), which is an XML transported by the SFA
layer. SFA itself does not cover such aspects as resource model, policies, reservations or measurements. These functionalities
should instead be implemented on top of SFA.

SFA designates a set of four main object types that represent the different entities involved in the testbed federation:

* Authorities: these represent testbeds, parts of testbeds to which trust or rights may be delegated, and/or communities of
users.

* Resources: these consist of nodes, links, or any other experimental resource provided by the testbeds, and exposed to the
users.

* Users: these are experimenters wanting access to resources.

» Slices: a slice is the basic unit of interaction between users and resources. One can think of a slice as corresponding to an
experiment, and englobing all of the users and resources associated with that experiment. As its name suggests, slices play
a central role in the SFA.

SFA defines a minimal set of API calls to enable interaction between the different actors of the federation, and that are

implemented around three main components:

'Registry manager': This exposes objects that are managed by the federation. 'Aggregate manager (AM)': This exposes the
resources of an individual testbed, or more generally, the resources that fall under a single authority. 'Slice manager (SM)':
This exposes the resources from multiple, federated authorities and is used to track slice objects.

The API calls listed on the slide can be organized into three main categories:

'Object management': These calls manipulate registry objects through the classical list, create, read, update and delete
functions. ‘Resource browsing and slice management': These calls associate resources to slices, as well as starting, stopping or
getting the status of slices. 'Federation discovery': There is an API call that is used to obtain detailed information about the
different federation services that are running, and to recursively discover peer platforms.

SFA is based on a web services API. To issue a call, a user must connect to a manager’s XML-RPC interface via HTTPS, using their
private key as a cypher, and passing as a first parameter the credential that shows that they are authorized to perform the
operation.

18

XML for resource/experiment description
http://www.geni.net/resources/rspec/3/
3 types:

Advertisement

Request

Manifest
Different domain-specific extensions to the
Geni Rspec 3 exist today

Fed4FIRE is defining a novel ontology-based
common Rspec

b ¢

X 19 iMinds

FEDAFIRE 19 CONNECT.INNOVATE (REATE

The GENI RSpecs are not tightly specified, which means that the same type of
resources (e.g. virtual machines) are defined in multiple ways. It is the goal in
Fed4FIRE to explore the use of ontology based descriptions for these RSpecs. This
should make it more easy for experimenters, experimenter tools and broker
developers to use these resources.

19

Sfi Class diagram for the “Driver” class

\ . DRIVER
W WRAP

SM
+ hrn: String
sfaadmin
/ \ ds_with_testbed_info()
R AM +augment_records_with_ |

+ register()
. +remove()
Testbed X Driver +update()

+ update_relation()

¢ ¢ + testbed_name()

Testbed X + aggregate_version()
Users Resources S +list_slices()
Mgt Mgt +list_resources()

+ sliver_status()

Overall architecture of SFAWrap

+ create_sliver()

(R: Registry, AM: Aggregate Manager, +delete_sliver()
SM: Slice Manager) +renew_sliver()
b 4
Sy /9™ iMinds
FEDAFIRE 20 CONNECT.INNOVATE (REATE

The main idea in the Fed4FIRE SFA approach is that we leave testbeds the freedom to choose how
they want to implement this SFA interface on top of their testbed management systems. However,
for testbeds that have not yet dug deeper into the SFA route, the project provides a generic tool that
allows them to adopt SFA with limited efforts and in a relatively short amount of time. This tool is
called SFA Wrap. It can be described as the generalized implementation of the SFA interface on top of
PlanetLab Europe. This SFA Wrap has already proven to be mature, and is now packaged in such a
way that it can be used relatively easily to wrap an existing testbed management framework with an
SFA interface. What the wrapper basically does is providing a finished implementation of the SFA
side, and providing some empty stubs at the testbed side. This is called the testbed driver. Testbeds
just have to fill in these stubs with appropriate calls to their existing testbed management software in
order to implement SFA support for their testbed. So this is a mature and generic solution to expose
any testbed through SFA with as little efforts as needed.

The slide depicts the main components of the SFAWrap overall architecture.

* Registry (R): The Registry is an XMLRPC over HTTPS service that exports exactly the Registry API.
The Registry is responsible for maintaining and serving SFA records namely: Authorities, Users and
Slices, and also issues the related certificates and credentials.

* The Registry can be deployed in a standalone mode in order to be used only to issue user and slice
credentials.

* Aggregate Manager (AM): The Aggregate Manager is an XMLRPC over HTTPS service that exports
exactly the Aggregate Manager API. The Aggregate Manager is responsible for performing all the
slice instantiations and also, allowing testbed aggregates to advertise their resources and attach
those latter to slices.

* Slice Manager (SM): The Slice Manager is an XMLRPC over HTTPS service that exports also the
Aggregate Manager API, but that has no real testbed attached directly. Instead, it acts as a proxy
that is aware of a pre-configured set of other services, either Aggregate Manager or in turn Slice
Manager.

The slide also depicts the UML class diagram of the ‘driver’ class. The testbed driver is the part of
SFAWrap that deals with the testbed specificities and talks to the testbed management framework.
Depending on how users and resources are managed within the testbed itself, the driver will need to
translate the Aggregate Manager APl and the Registry APl methods in order to match respectively
witl_h the testbed resources allocation/provisioning and the testbed users management and access
policies.

20

- storage managers

APlIs

rspecs |
. version |

registry

:]
i
3

mgt

virtual driver interface xsd specs

test:béd-
i dependent driver

‘&‘_‘
iz~ 8
[
T 0
Q@ aQ,
2
U)o
kO
=

4
‘o [J¥® iMinds
FED4FIRE 21 CONNECT.INNOVATE (REATE

Initially SFAWrap code was targeting PlanetLab testbeds only. With this in mind, the whole
code was redesigned to reach the design that is depicted on the slide. On this picture, the
dark pink boxes represent the core of the generic wrapper; the light gray boxes represent
the pieces of code that implement the 'plugin' system; and the dark blue boxes represent
the testbed-specific code that needs to be written in order to provide an implementation.

In more details, the various parts of the generic code are:

trust: This package implements all the details related to SSL certificates, GIDs, and
hierarchy management in terms of the chain of trust; this of course could also be used as
a standalone library if the need arises.

storage: This package implements the data model underlying all the entities in the
registry system, and namely Authorities, Users and Slices. The registry needs to know at
least which users belong in which authority, and which of them are allowed to act as this
aluthority (in other words, have Pl authorization), as well as which users are in a given
slice.

managers: This package provides a reference implementation of the 3 available services,
namely the Aggregate Manager, Registry and Slice Manager. Although the last one does
in essence not exhibit any relationship to a given testbed (being exposed only to SFA
entities), the first two do strongly depend on the testbed being wrapped. This is where
the notion of a testbed driver comes in. The testbed driver is expected to fulfil the
already defined virtual interface. A configuration mechanism then allows selecting the
driver to use at runtime.

rspecs: This package provides an abstraction in order to manipulate resource
descriptions in a way that does not depend too much on the version of the RSpec
formalism being used (as for legacy, clients have the option to choose among several
formalisms). There is also a provision for testbed operators to provide their specific
RSpec formalism(s) in the XSD format.

More hands-on information about how to use the system from a programmer’s point of
view can be found at https://svn.planet-lab.org/wiki/SFADeveloperTutorial

21

Based on X.509 certificates

This impacts the following components:

Identity provider
Certificate directory

Rules-based authorisation (not part of cycle 1, and
hence not relevant for facility providers at the

moment)

-
’V
%

FEDAFIRE 22

['F = iMinds

CONNECT.INNOVATE.CREATE

22

Testbeds can run their own identity provider, providing
SFA-compliant X.509 certificates to their own users

Testbeds can also choose to outsource this functionality
to the central Fed4FIRE identity provider

i i Domain 3
Domain 1 Domain 2 5 — > —
(e.g. Testbed 1) (e.g. Testbed 2) omain omain
d Identity .
jcentlty trusts to Provider "~
Provider . assert gets 7 . trusts to
N i y identity assert
ets ~ identit - assert
denti > Y credential . identity
identity pN / Sy
credential b ~
@) 0O
login x login ;t
Subject Relying Party Subject Relying Party

Testbed 1 relies on the central
Fed4FIRE identity provider

Testbed 1 runs its
own identity provider

Testbeds have two different options to give their local users an identity that is valid
throughout the Fed4FIRE federation: they can run their own compliant identity
provider, or they can request their users to register with the Fed4FIRE central
identity provider. Given that there may therefore be multiple identity providers in
the federation, there is no requirement for the implementation at each site to be
the same technology. As long as the technology is capable of producing X.509
certificates in the right format and is robust, mature and well supported, it may be
considered an implementation candidate.

In order to create a key pair and X.509 certificate, the following steps are required:

1.

5.

The user must create a public / private key pair. The public / private key pair is
owned by the user, and the private key should never go out of the possession of
its owner.

The user must create a “Certificate Signing Request” (CSR) that binds the public
key to some identity information.

The user must submit the CSR to the Certification Authority (CA) for signature.
This may be a CA created by the testbed or an external CA.

The CA performs any checks required, and if satisfactory, it signs the CSR with its
CA certificate. The result of this is the user’s certificate, which binds the user’s
identity information with the user’s public key, and the whole bundle is signed
by the CA certificate.

The CA returns the user’s certificate to the user.

Note that the SFAWrap Registry component can be used as an SFA-compliant X.509
identity provider.

23

Testbeds will only grant access to experimenters belonging to
trusted identity providers.

To authenticate the relation between an experimenter and its identity
provider, testbeds need to have the root certificate of that provider.

The certificate directory is a federation-wide store of root certificates
that can be consulted by users and testbed providers.

Federation Federation
Certificate Certificate
Directory N
Directory Directory
Manager Get latest federation
certificate bundle i:
] (]] = =p
Testbed 1's CA Testbed 2's CA Testbed n's CA P &
Certificate Certificate Certificate — (7
: P
‘ Testbed 1
Testbed1 | [Testbed2 [Testbedn m
> >]
eahed Testbed Testbed f]
Manager Manager Manager «i — 1 ,i —
ﬂ Federation Federation Federation
e Testbed 2's CA Testbed n's CA Certificate Certificate Certificate
Certificate Certificate \ Certificate / Bundle Bundle Bundle
N
Procedure for inclusion of a testbed’s Trust decision at the testbed using the
certificate in the directory certificate directory

The certificate directory is a federation-wide store of root certificates that can be consulted by users
and testbed providers. In many cases, testbed providers act as their own Certificate Authority (CA) by
having a self-signed certificate that is used to sign other certificates for users of the testbed. The
certificate directory is a single place to store all testbed providers’ “CA” certificates, for use by other
federation participants. In use, the certificate directory is likely to be consulted on a regular basis by
(for example) testbed providers, to provide them with an up to date list of the “CA” certificates used
by other testbed providers to issue their certificates. The certificate directory is simply a single place
to put CA certificates - the final decision whether to trust a certificate in the store is down to the
individual user or testbed.

The certificate directory is also an ideal place to store revocation lists from all the CAs - these are
blacklists of certificates a CA has issued in the past but now wishes to revoke. Revocation lists are
used by parties who check signatures (in this case the most obvious party is the testbed) because
they need to know the certificates that are blacklisted, and therefore they need to regularly
download the latest revocation lists.

There are access regulations in place as to who can put items (certificates or revocation lists) into this
store, as it must not be possible for anyone to put an item in the store (or for that matter to delete an
item). Therefore, for “write” access to the store, there are special privileges given to a trusted person

who manages the certificate directory. The procedure for getting an item into the certificate directory

should be that an application is made to the certificate directory manager (as shown on the slide).
The directory manager can use some criteria to determine acceptability of the requester, and if
accepted, the manager puts the item in the directory using its privileged access rights.

Getting a certificate or revocation list out of the store is simply a matter of it being served to the
requester. The adopted technology for this download is HTTP. Since certificates and revocation lists
are files in their own right, the certificate required can be identified by name. Alternatively, a bundle
of all the certificates or revocation lists can be downloaded from a single request. It is important to
note that it is the testbeds’ decision which CA certificates they decide to trust - simply by having a
certificate in the federation certificate directory does not imply any obligation onto the testbed
providers to trust it. This is illustrated in the right figure on the slide. Each testbed can download the
complete bundle of CA certificates for the federation, but the testbed has the final decision which of
these certificates they trust. In the figure, this decision is denoted by the arrows indicting that a
testbed has put the certificates they trust into their own local trust store.

24

Provide information about the Fed4FIRE
federation

Project itself

First Level Support

Testbeds directory

Tools directory

Register new experimenters

Act as a client tool

Resource discovery, requirements, reservation,
provisioning and release.

Experiment control bridge

4

Sy 19 iMinds

FEDAFIRE 25 CONNECT.INNOVATE (REATE

The portal is the central starting point to access the Fed4FIRE federation. The portal
provides pointers to the project website, to first level support (WP8), to the
federated testbeds’ background information and to appropriate FIRE tools. Portal
users are also guided to the First Level Support systems (e.g. Trouble Ticket System),
if they need help to register or use the portal or encounter problems while setting
up experiments. The portal also acts as the registration place for new experimenters,
providing an easy way for experimenters to register themselves with the Fed4FIRE
identity provider (and to access the federated testbeds). Note however that the
testbeds always determine whether the user can actually access them according to
their access policies. Moreover, the portal also performs the role of a client tool. On
behalf of the experimenter, the portal forwards queries to federated testbeds using
SFA delegation mechanism. Using the portal, the experimenter is able to search,
browse and reserve resources across federated testbeds. The portal also acts as a
bridge to experiment control tools.

25

Other SFAtool = —ceeeo

i Register new federation-affiliated experimenters

|

|

; |

— r
i U“-i, -------------- r----i Get certificates
{ ~ Reserve resources to authenticate

- Get testbeds info
(text, picture, i
E URL homepage) | ¢ i Get tools info E experimenters
Retrieve list of IP Tested ‘ '
addresses of the directory Tool directory :
federated aggregate b]
@ managers R R Ut RO
> i
o i
s '] Y
S 5 . .
om | Future reservation Certificate Identity
i broker directory provider

Resource discovery,
provisioning, release

! Retrieve list of endorsed tools

Interact directly with
the testbeds

- : Reserve resources
Discovery, reservation,

provisioning, release

It is obvious that the portal provides a vast amount of functionalities to the experimenters. Its implementation is

composed of three different functional elements of the Fed4FIRE architecture:

* The portal web interface. This is an instance of the MySlice framework. It is open to anyone with a valid
Fed4FIRE identity (being registered with the central Fed4FIRE identity provider or any of the testbed-
operated Fed4FIRE compliant identity providers). This web interface implements the functionalities related
to experimenter registration and to acting as a client tool. The framework can be easily extended through the
development of MySlice plugins.

* The testbed directory is a central service that provides the pointers to the different testbeds belonging to the
Fed4FIRE federation. It implements two different access methods: human readable and machine readable. In
case of the machine readable flavour, it can be considered as a central service that exposes a list of IP
addresses corresponding with the aggregate managers of the different Fed4FIRE testbeds. Very simply put:
the machine readable flavour is a yellow pages of Fed4FIRE testbeds. In the human readable version, it
provides textual high-level descriptions of these testbeds, a picture, and a URL pointing to a particular
testbed homepage where more detailed information is provided.

* The tools directory provides pointers to FIRE tools of all kinds, both to the officially endorsed ones and to
those tools that emerged naturally from the FIRE community. A mechanism using the SFA GetVersion API call
is inbplgce in order to enable testbed providers to indicate the tools that they officially endorse on their
testbed.

The interactions between these three components and the other components needed for their successful
operation are indicated on the slide. The portal web interface retrieves the needed information from the
testbed- and tools directory and presents this to the experimenter. Both directory components will retrieve their
needed information directly from the different testbeds using the SFA interface, based on a small extension of
the value returned by the GetVersion SFA API call that was defined by Fed4FIRE. The same testbeds’ SFA
interface is also contacted by the portal’s web interface for resource discovery, provisioning and release. For
user authentication, the portal web interface will rely on the root certificates downloaded from the certificate
directory. Using the portal, users can also register themselves with the central Fed4FIRE identity provider when
needed. The portal web interface also provides a GUI to reserve resources within the federation. For this it
interacts with the future reservation broker, which in its turn interacts with the different corresponding testbeds
to perform the actual reservation.

Note that next to the portal, any other SFA experimenter tool could be used to provide similar functionalities, in
line with our architectural approach that there should be no single point of failure in the federation. As depicted
on the slide, such a SFA tool could get the lists of the IP addresses of the Fed4FIRE testbed AM'’s, and then
directly interact with the testbeds’ SFA interfaces to implement the same functionalities as provided by the
portal. Note that it could (and most likely should) also interact with the Future reservation broker, certificate
directory and identity provider. This has been omitted from the figure in to avoid overloading it. Also be aware
that in this approach the testbed directory is not considered as a single point of failure, since the experimenter
would also be able to retrieve the IP addresses manually from other sources, and import them in the SFA tool.

26

*@ @

Define Define
scenario scenario
\
. HTTP -(1_4
= Future reservation *
@ broker
Portal 7‘-\-‘
(portal.fed4fire.eu) Tool directory

QoS
Identity
provider

O] arew—"
Testbed Certificate
directory I directory J

G =1

Experiment Experiment
B control server control server

Identity providér'

Discovery, reservation,
provisioning, release J
ShH
Rules-based -
authorization

Testbed A

e

Discovery, reservation,
release

Federation
facilitator

Testbed B

In the following slides we will discuss the main implementation detail regarding
experiment control: the adoption of the FRCP protocol as a common resource
control layer. Since this protocol is closely related to the latest OMF6 developments,
we also briefly introduce the OMF architecture.

Experiment control

Resource control mechanism

Experiment controller

FRCP:

Federated Resource Control

Protocol

~
o

ﬁ”“"e Discovery g, e riment Orchestration and Control \
and Provisionin g

Portal \ Experiment Controllers

(NEPI | [OMFEC

Testbed Management

MyPLC Teagle OMF other

Resource Control
Federated Resource Control Protocol
FRCP

Common protocol for RC [

Efficient way to support RC in ["'}"35" pre 'rrT rrt]
. S 2

heterogeneous federation:

- Multiple testbeds
 Multiple experiment controllers

Testbeds

4

Sy 19 iMinds

FEDAFIRE 28 CONNECT.INNOVATE (REATE

In the context of experiment control in Fed4FIRE, two main aspects can be
identified. The first one is the need for a federated resource control layer. The
second one is the need for an experiment controller which makes use of this control
layer to actually control the experiment.

Regarding the control layer, for it to be possible for a number of experiment control
tools to operate on a large number of facilities at a reasonable cost, without having
to implement specific code to interact with each different facility, a common
interface or protocol to interact with resources must exist in all facilities. The novel
federated resource control protocol (FRCP) is such a protocol. It consists of a
message being sent by a requester to a component (or resource). The component
may accept the message and perform the requested associated actions. For the
message exchange with the resources (physical or application resources), the
necessary resource controller (RC) implementation, supporting the set of defined
messages, should be running in the different resources of the facility. This
technology is currently driven in the context of OMF 6 development, defining the
messages characteristics for the FRCP, and several resource controllers suitable for a
wide range of testbed. Fed4FIRE adopts FRCP as its common experiment control
layer. Therefore it needs to be supported by all Fed4FIRE testbeds. As a result, all
experiment controller engines compatible with FRCP will be able to access and
control resources provided by federated facilities out of the box. Both NEPI and the
OMF Experiment Controller are supported in the Fed4FIRE federation, the choice of
using the one or the other will be related to the type of experiment. But in theory
any other FRCP compliant controller should also be able to work out of the box.

28

OMF exec OEDL file -
Aggregate

&1 Manager

‘ E XMPP ‘ Inventory

Experiment

controller .
Disk

E_*--, If needed: imaging

! =
wer n

L_??___e____o_d_e__ , Chassis ‘

1
1
: manager
1
1
13

L

X
O
Py
(0]
(2]
o
C
19
(0]
O
o
3
=
<k
0}
=

\\l/\\lj /)GJ ittt

FRCP is currently under development as part of OMF, introduced for the first time in OMF6. Therefore the easiest way for
testbeds to adopt FRCP will be to install the FRCP related part of OMF6. Therefore it is of interest to briefly introduce OMF here
in some more technical detail. OMF (http://omf.mytestbed.net) is a generic framework which allows the definition and
orchestration of experiments using shared (already provisioned) resources from different federated testbeds. OMF was
originally developed for single testbed deployments, but has recently been extended to support multiple deployments and the
following features. First, it provides a domain-specific language based on an event-based execution model to fully describe
even complex experiments (OEDL). OMF also defines a generic resource model and concise interaction protocol (FRCP), which
allows third parties to contribute new resources as well as develop new tools and mechanisms to control an experiment (as
mentioned on the previous slide). It has a distributed communication infrastructure based on XMPP supporting the scalable
orchestration of thousands of distributed and potentially disconnected resources.

But how does this OMF experiment control work? This is depicted on the slide. At the bottom the resources are depicted, in
this case an embedded PC with several wired and wireless connections. On the OMF layer, three entities can be observed. The
Aggregate Manager (AM) is responsible for the inventory, disk imaging and chassis management (powering nodes on or off
when needed. The second OMF management entity is the Experiment Controller (EC). It processes a description of the
experiment scenario (written in the OEDL language), and will automatically trigger the right actions at the right nodes when
needed. Although it is part of the OMF management layer from a logical point of view, the EC can both be provided as a service
by the testbed, and can be run locally by the experimenter on its own PC. To perform these actions at the resource, the EC will
send a message to a daemon running an every resource: the Resource Controller (RC). The RC is capable of executing
everything what a user could do manually on the command line. It can also make abstraction of certain commands by
wrapping them in OMF commands. An example is the OMF command to change the Wi-Fi channel. Behind the curtains it will
determine which wireless driver is used on the resource, and will then select the suitable set of command line commands to
execute, depending on the driver. To support this messaging between EC and RC, an XMPP service is used. Hence a XMPP
server is added as the third entity of the OMF control framework. The protocol used by the EC to request actions at the
different RCs is FRCP.

So the experiment control is executed as follows:

1. The experimenter gains access to the PC that runs the EC (his own PC, or a server at the testbed that is
reachable through SSH)

2. The experimenter starts the experiment control procedure by giving the command “OMF exec”. The name of
the scenario description that is to be executed is given as an argument. The EC will process this description,
and will initiate specific commands at certain resources at the appropriate time.

3. If the target node is powered off, the EC will call the chassis manager service of the AM to power it on. For this
it will send an appropriate XMPP message.

4. Once the target node is powered on, the EC will request the RC running at the desired resource to perform a
certain command. As mentioned, this can be any command that could also be given on the command line
manually. To trigger the RC, an XMPP message is sent from the EC to the RC. This message is compliant with
the FRCP protocol.

It is a common misassumption that OMF and OML are the same things, while in fact they are not. OMF is the framework for
provisioning and experiment control as described above. OML is an additional software suite targeting experiment monitoring.
They are very often deployed together in testbeds, but this is not a strict requirement. From a logical point of view they can be
considered as two separate entities. You can run OMF without running OML, and vice versa.

29

Get monitor data
HTTP

Get monitor data
HTTP

-—
*/ T %
Future reservation *

(1 @ 1 broker

|
}éﬁyal facility monlmrl o
Tool dlrectory

: (rra'le-eh-uppb
I I
P == e 2
K Te#be 4 Certlﬁcate ' dentlly
/ dlraﬂ dlrectory provider 1

Discoygry, reservation, f’&' "
roMsioning, release

Rules-based,
authorizati Infrastructure
monitoring

\\ Federation

Facility

monitorina U facilitator

Facility

Testbed A EEHHERGT

In the following slides we will discuss the main implementation detail regarding
monitoring and measuring: the adoption of the OML stream as a common data
format. The measurement, infrastructure monitoring and facility monitoring will
output OML streams, which can then be accessed, persisted and visualized using

experimenter client tools.

30

Uniform
reporting of data

Facility monitoring

{ Information

Zabbix

representation

abstraction

Visualisation and analysis

Federated access

through OML S s

[TopHat]
streams = ,‘ A
Freedomof &%
choice regarding - A Collction and sone
M&M tools o EEE

Collection and
storage: OML
framework
Visualisation
and analysis:
Tophat

Radio
spcclrnmj
OML MPs

Network

traffic

OML MPs

Other
OML MPs

Experimental measurement

[Zabbix]

| |

Thorough analysis led to the insight that the most widespread commonality is the use of
OML as a collection and reporting framework. It allows instrumenting any sort of system
through the abstraction of a measurement point, describing a group of metrics. This
abstraction allows more latitude in the choice of measurement tools: as long as they
conform to the same measurement point for the same information, their output can be
used indistinctly in further analysis. Selecting OML for reporting purposes therefore allows
flexibility in the choice of measurement tools, both for monitoring and measurement tasks,
as well as for a unified way to access the collected data.

This however only caters for collection and storage, but not directly access to or
visualization of the data, let alone from a federated environment. Another tool for this
purpose therefore needs to be identified. For this purpose, Top Hat fits the bill for its ability
to run queries over distributed systems and data stores, and pre-existing deployments

Facility and infrastructure monitoring tasks require specific metrics to always be made
available about the testbed and its node. While some deployments already have solutions in
place, the most indicated ones for others are, in order of preference, Zabbix, Nagios or
Collectd.

Overall, this caters for the measurement architecture shown on the slide. Essentially, all
testbeds will be required to deploy OML and TopHat, for measurement collection and
federated access, respectively. With the aim of limiting the impact on deployed solutions,
monitoring and measurement tools already in use will not be superseded, but rather
adapted to be included in the proposed architecture. For cases where a requirement is not
met, default solutions are prescribed.

31

Get results

(store if measurements started in
OEDL file, 1 DB per experiment)

_ L

Aggregate Manager

i ?l OML
Experiment i XMPP i TToventoy=T> service
! 1
controller ‘ server ‘ |- _Disk ____, OMLsQL
[imaging DB
mEGEEGE | EeE .)
A S i Chassis ‘
: H manager

- - -

OMF EC can also Get results m—
automatically poll to

influence experiment
execution

Store value
RC ML ====-- |

= {"RC: Resource Controller -
(M) DY) @ADLy i\ ML: Measurement library

[+®)

Store value

OML (http://oml.mytestbed.net/projects/oml/wiki) is a generic framework that can
instrument the whole software stack, and take input from any sensor with a software
interface. It has no preconception on the type of software to be instrumented, nor does it
force a specific data schema. Rather, it defines and implements a reporting protocol and a
collection server. On the client side, any application can be instrumented using libraries
abstracting the complexity of the network communication. Additionally, some of the
libraries provide in-band filtering, allowing to adapt the measurement streams obtained
from an instrumented application to the requirements of the current observation (e.g., time
average rather than raw metrics). Applications for which the code is not available can also
be integrated in the reporting chain by writing simple wrappers using one of the supported
scripting language (Python or Ruby). After collection from the distributed application, the
timestamped data is stored in an SQL database (SQLite3 or PostgreSQL), grouped by
experimental domain; a server can collect data from several domains at the same time.

As mentioned before, OMF and OML are separate entities from a logical point of view: you
can run OMF without running OML, and vice versa. But their corresponding software
libraries are installed on the same entities. As depicted on the slide, OML consists of a
service running on the resource, and a service and database running on the Aggregate
Manager (AM). On the resource, the Measurement Library (ML) takes measured values as
an input, and is responsible for getting them added to the database at the AM. It does so by
calling the OML service running at the AM. Again XMPP messaging is applied. Annotations to
the measured values such are experiment ID, source ID and so on are automatically added
by the OML framework. From an experimenter point of view, it is sufficient to redirect the
measured value coming out of your own software or measurement tool to the ML to collect
all of them in a single place for future processing.

32

What is Fed4FIRE?
Overview of the Fed4FIRE architecture

Implementation of the Fed4FIRE
architecture

Implications of joining Fed4FIRE on the
testbeds

e ['F = iMinds

FED4FIRE 33 CONNECT.INNOVATE.CREATE

33

ks HTTP
SSH
' 1
1 1
| a
Control the E 1 Discover, specify, reserve,
n experiment | I provision, release
) s ,
X i
o !
o Retrieve |
monitoring data |
Store
monitoring ¢
data
be TLESE Testbed Manager
Zabbix i Discovery Reservation
m server
Release Provisioning
* Manage H
- 8 . ol)
" .
8L Zabbix -
® g agent
eg
£ ®WeHOO
albl/g/n

In order to illustrate the implications of joining Fed4FIRE on a testbed, we will ellaborate an
example case. This example is a wireless testbed which has the following type of resources:
embedded PC’s with several wireless interfaces: IEEE 802.15.4/ZigBee , Bluetooth and 2 IEEE
802.11 a/b/g/n interfaces.

This testbed is managed by specific testbed management software. It is responisible for
providing resource discovery, reservation, provisioning and release services to the testbed’s
users. These experimenters user their browser to surf to a webpage offered by the testbed
manager in order to use these services. The interfacing between the testbed manager and
the resources that it manages is a custom one.

Using their SSH client, experimenters can log in to their provisioned nodes, and manually
control the experiment on the command line.

To provide the experimenters with monitoring capabilities, the testbed is also equipped with a Zabbix
server. The corresponding agents are deployed on every resource. These agents continuously monitor
a large number of metrics such as CPU load, free RAM memory, amount of transmitted packets for
each networking interface, amount of transmission errors for each networking interface, etc. The
corresponding data is pushed to the Zabbix server using the Zabbix API, where it is stored in a
database.

To retrieve this data, the experimenters user their browser to surf to a website provided by the
Zabbix server.

06/05/13

34

Needed steps to support SFA

How to support How to describe
the SFA API? your resources?

Deploy testbed Geni Rspec 3 If needed, define

software which o\ONrndfupslggn!%u;A Or adopt (until F4F domain-specific
natively supports SFAWrap ontology Rspec is extension to this
SFA

implementation finished) RSpec

: Running your
Override the own identity

river cl :
driver class provider?

Yes: import local
user base in No: do nothing
SFAWrap Registry

FEDAFIRE 35 CONNECT.INNOVATE.CREATE

When looking to support SFA, a testbed has three different options:
* Replace your existing testbed management software with software that natively
supports SFA
* Deploy your own custom SFA implementation that complements your existing
testbed management software, or
* Adopt SFAWrap to complement your existing testbed management software. In
this case:
* Override the driver class of SFAWrap
* When running your own identity provider: import local user base in
SFAWrap Registry

Until the common ontology-based Rspec gets finalized: use Geni Rspec 3 Rspecs,
define domain-specific extensions of the Geni Rspec 3 if needed

35

Example case: adopt SFA Wrap

HTTP HTTP
e B @

%, Discover, specify, / Discover, specify,
\, reserve, provision, / reserve, provision,
\, release release

extension

Testbed Manager

Ach

Reservation]

Ne—.

Discovery

[Release J Provisioning] N

In this example case it was decided to adopt SFA Wrap to support SFA. It is deployed
as an additional machine belonging to the testbed management infrastructure, and
it translates the incoming SFA AM calls to appropriate calls to the REST interface of

the Testbed Manager. For this it was needed to implement the appropriate SFA

Wrap driver.

After deploying SFA Wrap and its AM service component, any SFA compliant tool (of

course including the Fed4FIRE portal) can be used for resource discovery,

specification, reservation, provisioning and release. Of course, the origi

nal testbed

webinterface also remains operational for serving e.g. local experimenters that

prefer to use this interface.

36

Needed steps to support security

Functional Implementation strategy
element

Identity » Outsource this functionality to the Fed4FIRE
provider identity provider, or
+ Deploy your own, using the SFAWrap
Registry or any other implementation of your

choice.
Certificate « If you run your own identity provider:
directory provide its root certificate to the operator of

the certificate directory
« Fetch the certificates from the certificate
directory (using a HTTP get request)

FEDAFIRE 37 CONNECT.INNOVATE.CREATE

37

__ [Certificate
directory

I Upload testbed
! root certificate

=
ie)
7}
=
O
x
[0}

HTTP download root certificates

SFA
Wrap
of the other Fed4FIRE testbeds —

Testbed Manager
Discovery Reservation
Release Provisioning

Comenl o aageanis e
i SM: Slice Manager !
R: Registry

Supporting the SFA AM API is the minimal requirement for testbeds wanting to
federate with Fed4FIRE. However, the example testbed’s architects decided in this
example that they wish to also operate their own identity provider, and their own
slice manager. By supporting all this functionality themselves, they opt to rely as
little as possible on the services provided for convenience by the Fed4FIRE
Federation Facilitator. Therefore the Slice Manager (SM) and Registry (R) services of
SFA Wrap are also activated. Since the testbed management software did not yet
implement the concept of local user accounts (the entire testbed was operated
behind a firewall, once you gained access to the LAN after the firewall it was
assumed that you are a local user and can use the testbed freely), there is no need
to synchronize the SFA Wrap Registry with any of the testbed management
components. Note that the SFA interface should of course be exposed directly to the
Internet, while the outgoing REST interface used by the testbed-specific driver
should be able to then penetrate the firewall.

Since the testbed decided to operate its own identity provider, it has to provide its
own root certificate to the operator of the Fed4FIRE certificate directory. To be able
to authenticate non-local Fed4FIRE experimenters it is also needed to download the
root certificates of the other Fed4FIRE testbeds from the FAF certificate directory,
and to add them as trusted certificates in the SFA Wrap deployment.

38

Portal plugin + Expose your testbed through SFA
« The portal provides a table view and a map
view on the resources. If your testbed
requires a specific GUI, implement this as a

MySlice plugin
Testbed » Expose your testbed through SFA
directory * Provide the public IP address of your SFA

Aggregate Manager

+ Extend the XML-struct that is returned by
the SFA GetVersion call with some high level
information about your testbed.

Tool directory « Support the testbed directory
« Augment the high level testbed information
with a list of officially endorsed tools

To support the Fed4FIRE testbed and tools directories, the value XML-RPC struct

returned by the GetVersion API call of SFA is extended with the following members:

* f4f describe_testbed: a String containing a human-readable description of the
testbed. The intention of this field is to provide rather high-level introductory
information to the testbed.

* f4f testbed _homepage: a String containing the absolute URL to the testbed
homepage or any other webpage that provides more detailed information about
the testbed than what will be included in the member
Fed4FIRE_describe_testbed.

* f4f testbed picture: a String containing the absolute URL to a picture of the
testbed that should be presented in the overview of all Fed4FIRE testbeds as
presented by the testbed directory.

* f4f endorsed_tools: an array of data structures indicating the tools that are
officially endorsed by the testbed. This data structure contains the following
members

* tool_name: a String that contains the name of the tool.

* tool_logo: a String containing the absolute URL to the logo of the tool.

* tool_homepage: a String containing the absolute URL to the tool
homepage or any other webpage that provides more detailed information
about the tool.

* Tool version: a String indicating the latest version of the tool that is
officially endorsed.

39

Example case: support the portal

No MySlice
qr7p plugins needed
Testbed @
directory ‘ l
R—— \
Discover, specify, N
reserve, provision, \\
_______________________________ release N]

"\ GetVersion extended
\

) according Fed4FIRE specs
Upload public IP *
address AM service,

SFA &0 o0 o8
Wrap AM SM R

1
1
1
1
1
i
| \
1
1
1
1
1
1

extension

Testbed Manager

Discovery =~ Reservation
Release ~ Provisioning
—_. !’ AM: Aggregate Manager \:
; R: Registry i

SM: Slice Manager

The requirement that the testbed should be exposed is already covered by the fact
that we adopted SFA Wrap previously. The existing table and map views provided by
the portal are considered to be sufficient. Hence no additional plug-ins for the portal
web interface need to be implemented. The public IP address of the SFA Aggregate
Manager is communicated to the testbed directory operator, as depicted on the
figure. Finally, the GetVersion API call implementation in SFA Wrap is extended in
order to include the information needed by the testbed directory and the tools
directory.

So no new components had to be added to support the portal, only the public IP
address had to be given to the testbed directory operator, and the GetVersion
reponse implementation on the deployed SFA Wrap instance needed a minor
update.

40

Two possibilities to install FRCP:

Install the full OMF 6 stable release as your
testbed management software, or

Keep your current management software, but
install only the FRCP part of OMF 6.

Implement the corresponding resource
controllers in case OMF 6 does not provide

them.
\ 4
Iv - -
e [JF® iMinds
FEDAFIRE 41 CONNECT.INNOVATE (REATE

Some more technical details:

To install OMF 6 in testbeds these are the dependencies the testbed should support:

* Ruby 1.9 to be installed on the hosts running the resource proxies and the
experiment loader

* OMF 6 requieres Ruby Gems

* For the XMPP-based Publish-and-Subscribe the recommended server is OpenFire
(»3.7.1)

In the case of NEPI experiment controller, the dependencies below must be met on
the system prior to installing NEPI and its modules:
* NEPI requires:

* python>=2.6

* jpaddr>=2.1.5
* NETNS requires:

* Linux kernel >=2.6.36

* bridge-utils

* iproute
* NEF requires:

* libgt4 >=4.6.3

* python-qt4 >=4.7.3
* ns-3 requires:

* python-dev

The installation of OMF 6 includes the OMF EC, therefore, fulfilling the ruby
dependencies described above is enough for running the experiment controller.

41

Py
%
Y
@
1]
<}
j
5
o
®
(@]
o
3
2
E
=X
@
]

OMF exec OEDL file

OMF6 Experiment Z
controller

c
Re)
(%)
c
£
(0]

Perform action (using FRCP protocol)

() €2 €3 () ()

a/b/g/n

Perform action (using FRCP protocol)

In this example, it is chosen not to fully adopt the OMF6 framework (being its capabilities
both for testbed management as for experiment control), but instead to keep the existing
testbed management software and install only the experiment control related FRCP part of
OMF®6 on top. This means that on every resource an additional service is deployed: the
OMF6 Resource Controller (RC). Since our resources are all Intel x86 compatible nodes
running Linux, there was no need to implement a new OMF6 RC, the appropriate one is
already existing as part of the standard OMF6 framework.

It is not a strict requirement that the testbeds deploy an OMF6 Experiment Controller (EC)
themselves, since experimenters can also run this themselves. However, since it makes life
of the experimenter much easier to be able to just login to an existing EC and execute their
OEDL experiment description there, it was decided in this example that the testbed will
deploy its own OMF6 EC. Note that OMF®6 also requires the presence of an XMPP server for
messaging, which was also added to the testbed infrastructure.

As depicted on the slide, the experiment control is then executed as follows:

1. The experimenter gains access to the server that runs the OMF6 EC

2. The experimenter starts the experiment control procedure by giving the
command “OMF exec”. The name of the scenario description that is to be
executed is given as an argument. The EC will process this description, and will
initiate specific commands at certain resources at the appropriate time.

3. Totrigger the RC, an XMPP message is sent from the OMF6 EC to the OMF6 RC.
This message is compliant with the FRCP protocol

42

Facility and
Infrastructure
monitoring

Experiment
measurement

b 4
IV
Aty

FED4FIRE

Deploy Nagios and/or Zabbix and/or collectd
if not yet available

Instrument these relevant measurement
systems (all participants, with support from
Fed4FIRE)

Deploy OML if not yet available

Instrument relevant measurement systems
(all participants, with support from
Fed4FIRE)

['F = iMinds

43 CONNECT.INNOVATE.CREATE

In order to implement the Fed4FIRE design for monitoring as previously explained,
seven implementation steps have been identified, as presented on this slide. Most
steps (service deployment and application instrumentation) need to be undertaken
independently by all participants. Where commonalities exist (e.g. Zabbix and
Nagios) instrumentation is a common effort. To support with the instrumentation
task, a clearinghouse of homogenized OML measurement points schemas is
provided by Fed4FIRE. The goal is to ease integration of new applications while
maintaining the highest level of data exchangeability and interoperability between
measurement tools providing the similar information.

43

________ Library ____ .
HTTP SQL
client
Retrieve | . .
monitoring data ' ! Retrieve monitoring and
1)

--------------- measurement data

Store measurement

=
2 OMF6 Aggregate data
c Manager; ——'
g a2 ,
a<) OML OML OML 7 - /
SQLDB @ service = TTTTTTTTTT ML
l by
B e e SR CE L bRty CECCECEELTertt- - - bl
monitoring . ' Zabbix
data ! Store agent
i monitoring — ,
Retrieve | data /) () ()
monitoring E @ C’ c)\‘;/{)/;;ﬂ’/

data

As mentioned before, we have defined three types of monitoring in Fed4FIRE: facility
monitoring (is the facility up and running?), infrastructure monitoring (info about resources,
e.g. CPU load, free RAM, etc) and experiment measurement (end to end delay, etc). And in
this example testbed Zabbix was already deployed as the monitoring framework responsible
for both facility and infrastructure monitoring. To transform this data into the Fed4FIRE
common format, OML streams, an additional service needs to be deployed that queries this
Zabbix server and translates the stored data into an OML stream. The implementation of
this service is done by the specific testbed operator team, but they can use existing scripts
provided by Fed4FIRE that illustrate how a Zabbix server can be queried through the Zabbix
APl and how this fetched data can be injected into an OML stream. This stream is then
forwarded using XMPP (not depicted in order not to overload the slide, XMPP server will be
available since it was part of the testbed extension for experiment control) to the OMF
Aggregate Manager that runs the services needed to persist the data in an SQL DB. This DB
is run as part of an OMF6 Aggregate Manager. This is the default way for the installation of
an OML persistence service as provided in the default OML package.

For experiment measurements, OML is needed by Fed4FIRE, therefore it is also needed to
deploy an appropriate OML Measurement Library ML) on each resource. Since our
resources are all Intel x86 compatible nodes running Linux, there was no need to implement
a new OML ML, the appropriate one is already existing as part of the standard OML
framework. On every resource the Measurement Library can be used by the experimenters
to automatically store their measured data in the OML SQL DB of the AM.

Both the monitoring and the measurement data can be retrieved from the OML SQL
database using any SQL client. This does not interfere with the original modus of operandi of
the testbed: it remains possible to retrieve the monitoring data by surfing to the Zabbix web
interface.

44

Fed4FIRE allows facility providers to

Reach a larger community of potential
experimenters

Increase the technical possibilities for their
experimenters

Lower their costs
It is based on a distributed architecture, in
which common API’'s are very important

Several options exist for the adoption of each

of them. Default solutions are provided in
order to minimize the needed effort to join the

federation.

45

Questions

g
%o

FED4AFIRE

info@fed4fire.eu

46

CONNECT.INNOVATE.CREATE

46

This work was carried out with the support
of the Fed4FIRE-project (“Federation for
FIRE"), an Integrated project funded by the
European Commission through the 7th ICT-
Framework Programme. (318389). It does
not necessarily reflect the views of the
European Commission. The European
Commission is not liable for any use that
may be made of the information contained
herein.

b ¢

L J

R 19 iMinds

4
FEDAFIRE 47 CONNECT.INNOVATE (REATE

47

