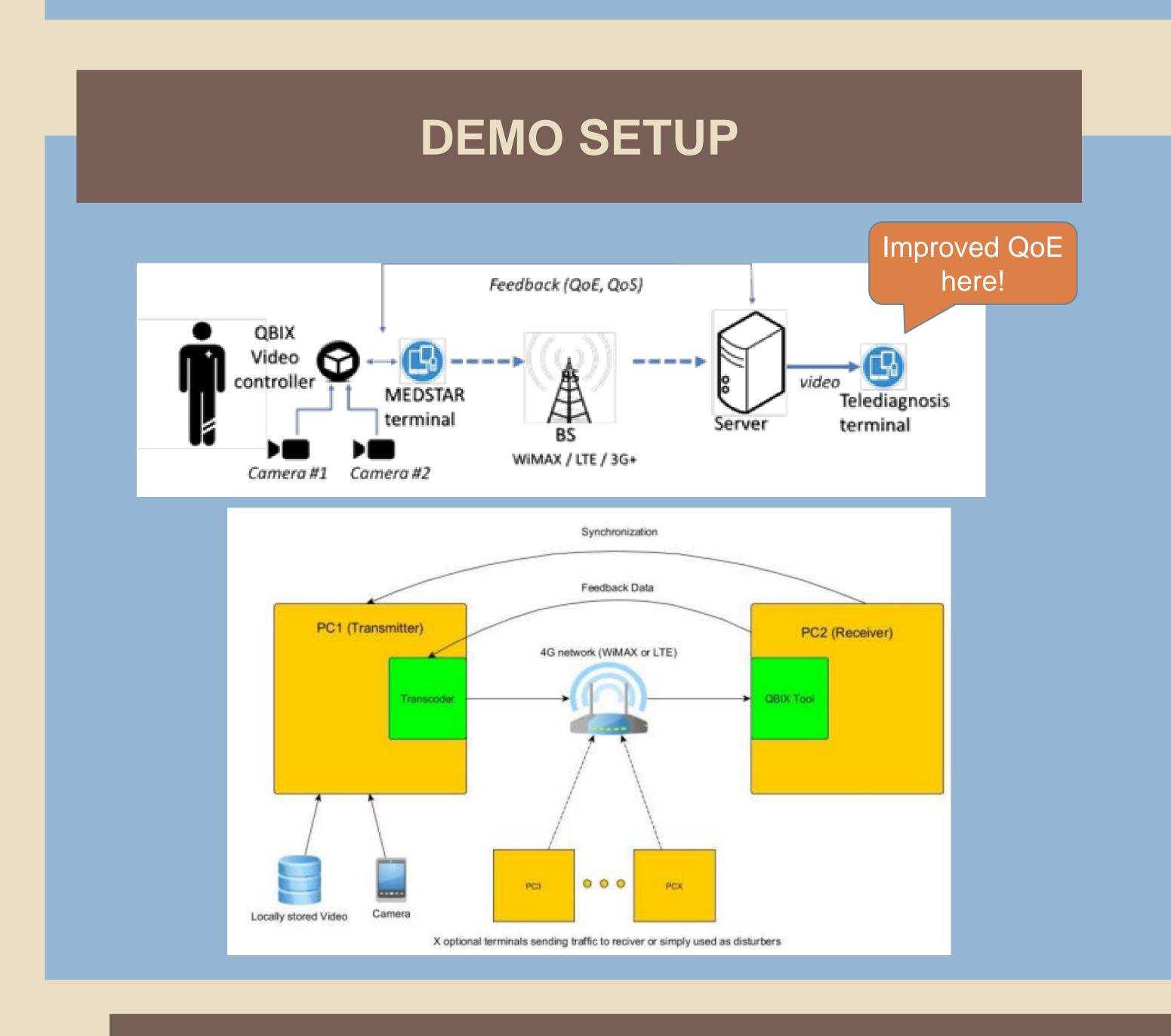
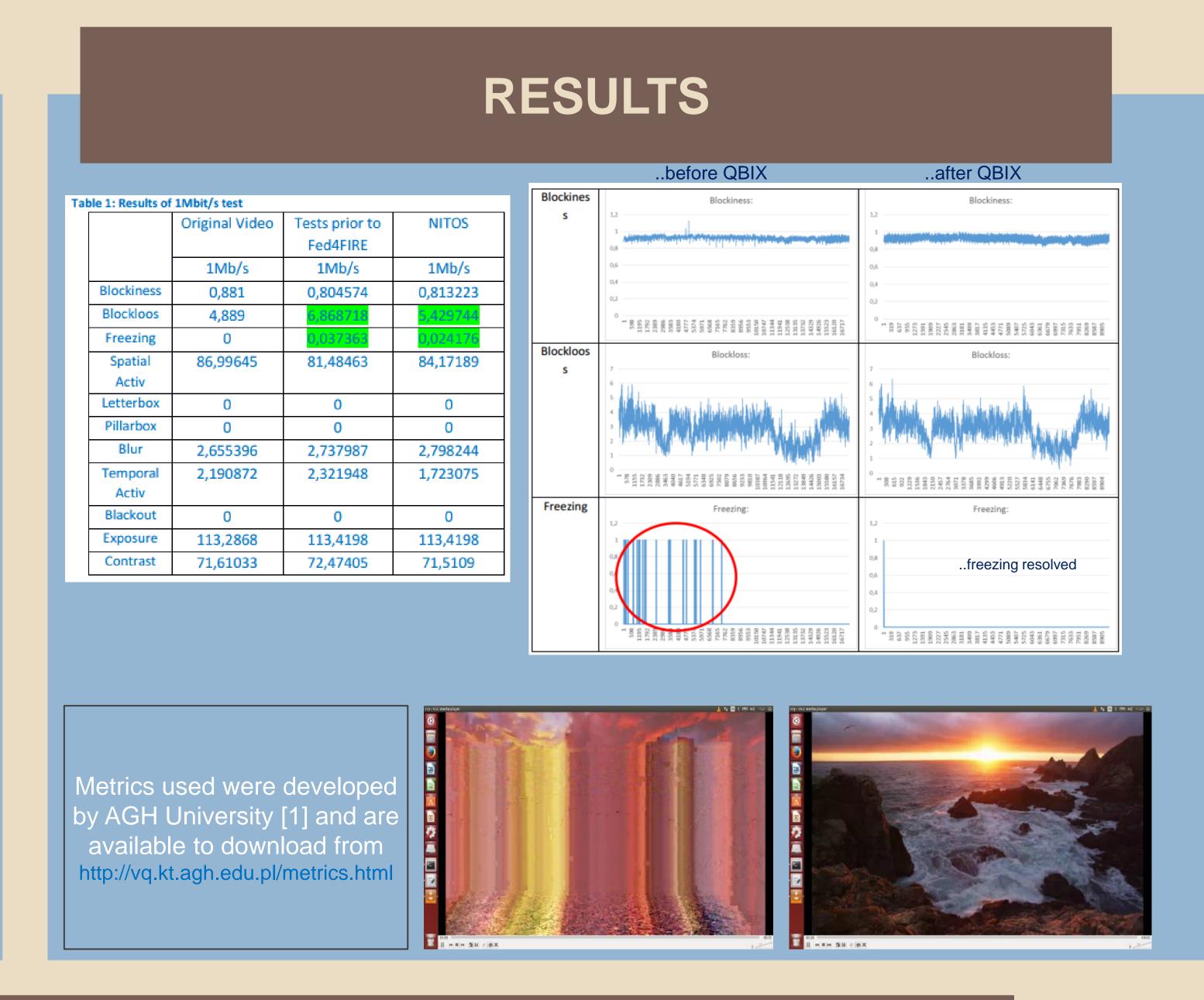
QBIX - Quality booster for QoE and context-aware adaptive service

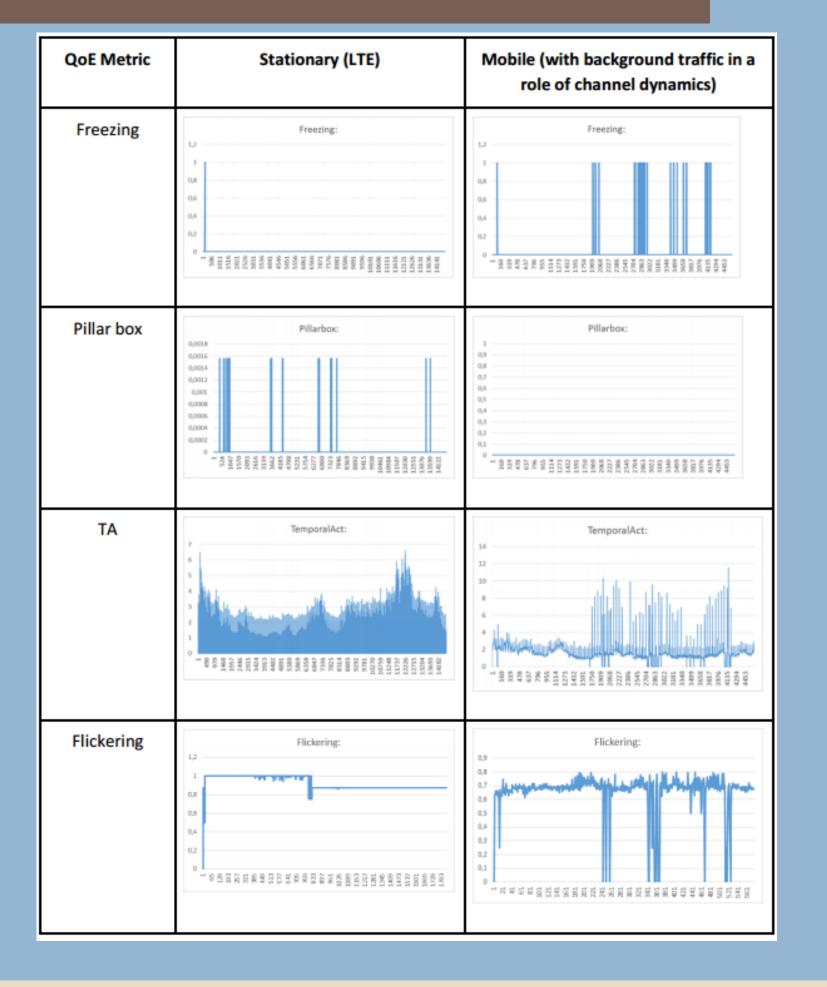



GOALS

- testing innovative QoE Video Controller features with different network technologies (WiMAX, LTE),
- verifying reliability and tune the Video Controller logic to improve QoE
- evaluating the congestion control rules for selected use-cases (i.e. MedStar eHealth application)

CHALLENGES

- Hard to get access to Base Station parameters and network statistics in normal tests
- Switching between different technologies would require lot of work and investments (at start our video controller were developed with WiMAX in mind)
- In testbed, there was perceptible lack of mobility testing



MORE RESULTS

	h o metrics used Ideal value		
Blackout	0		
Blockiness	From 0.9 to 1.01		
Block Loss	From 0 to 5		
Blur	From 0 to 5		
Contrast	From 45 to 55		
Exposure	From 115 to 125		
Flickering	For time window with a length of 8		
	frames typical value is around 0.125		
Freezing	0		
Interlacing	0		
Letter-boxing	0		
Noise	From 0 to 3.5		
Pillar-boxing	0		
Slicing	≈ 0		
Spatial Activity	From 0 to 60		
Temporal Activity	From 0 to 20		

Protocol Blockiness Blockloss Freeze	Test1 Single stream 1Mb/s							
TCP-D 0,878 2,639 0,043 UDP-C 0,876 2,467 0 UDP-D 0,879 2,549 0,044 Test2 Single stream 2Mb/s Protocol Blockiness Blockloss Freeze TCP-C 0,818 1,307 0 TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0		Protocol	Blockiness	Blockloss	Freeze			
UDP-C 0,876 2,467 0 UDP-D 0,879 2,549 0,044 Test2 Single stream 2Mb/s Protocol Blockiness Blockloss Freeze TCP-C 0,818 1,307 0 TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0		TCP-C	0,88	2,479	0			
UDP-D 0,879 2,549 0,044		TCP-D	0,878	2,639	0,043			
Test2 Single stream 2Mb/s Protocol Blockiness Blockloss Freeze TCP-C 0,818 1,307 0 TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0		UDP-C	0,876	2,467	0			
Protocol Blockiness Blockloss Freeze TCP-C 0,818 1,307 0 TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0		UDP-D	0,879	2,549	0,044			
TCP-C 0,818 1,307 0 TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0	Test2 Single stream 2Mb/s							
TCP-D 0,817 1,752 0,183 UDP-C 0,818 1,395 0		Protocol	Blockiness	Blockloss	Freeze			
UDP-C 0,818 1,395 0		TCP-C	0,818	1,307	0			
		TCP-D	0,817	1,752	0,183			
UDP-D 0,801 3,599 0,023		UDP-C	0,818	1,395	0			
		UDP-D	0,801	3,599	0,023			

CONCLUSIONS

Thanks to experiments we conducted within testbed we:

- were able to gain insights and <u>acknowledge the role of Fed4FIRE</u> testbeds in development and/or improvement of our products and services
- verified that Fed4FIRE can be valuable for <u>remote collaboration opportunities</u> of our testers and developers (it worked as single stop shop for the development, tuning and reconfiguration of the solution, available 24/7)
- able to gather valuable insights for further tuning the QBIX controller
- have identified new <u>means for performing scalability tests</u> without hassle of necessary HW configurations and time consuming tests (time & cost savings)
- <u>verified the influence of network</u> configuration (e.g. BS parameters / statistics) on the QBIX controller performance not possible without access to dedicated testbed
- were able to identify some performance flaws of our solution and its sources
- were able to check possibilities of integrating QBIX with LTE networks
- were able to test behavior of our solution with high end equipment

POST MORTEM

- Experiment allowed for a development of several extensions for MediStream ITTIs telecare product
- Possible further extensions for video controller to better suit other profitable markets (security or autonomous cars)
- Testbeds provides great asset for any SME interested into comprehensive testing and evolvements of their tools and services
- Literature:

[1] Mu, M., Romaniak, P., Mauthe, A. et al. Multimed Tools Appl (2012) 61: 787. doi:10.1007/s11042-011-0946-3