

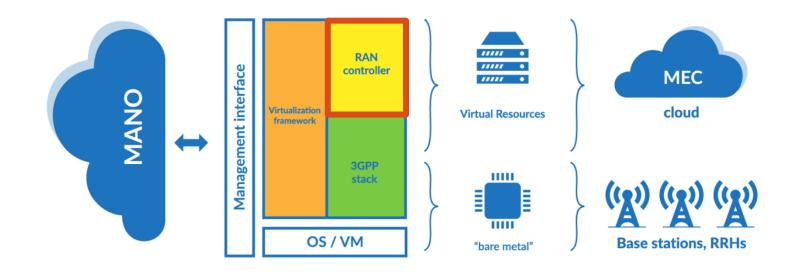
3rd Fed4FIRE Engineering Conference

14.03.2018


- 1. LTE eNB Scheduler overview
- 2. Fed4FIRE+ OC1 Experiment

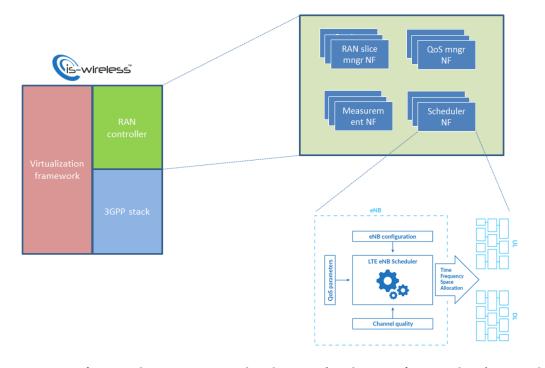
- Implemented based on extended Small Cell Forum recommendation
- Support for Carrier Aggregation
- Ability to guarantee GBR traffic
- Real-life imperfection corrections wrong CQI reporting compensation
- 30% higher peak throughput with maintaining edge cell users performance

4



Algorithm/ Component	Round Robin	maxCQI	Proportional Fair	M-LWDF	M-QBER	LTE eNB Scheduler
Channel conditions	No	Yes	Yes	Yes	Yes	Yes
Historical throughput	No	No	Yes	Yes	Yes	Yes
Packet delay	No	No	No	Yes	No	Yes
Queue length	No	No	No	No	Yes	Yes
GBR/non- GBR traffic	No	No	No	No	No	Yes
Carrier Aggregation*	No	No	No	No	No	Yes
Wrong CQI correction	No	No	No	No	No	Yes
						J

WWW.FED4FIRE.EU



AS A PART OF SOFTWARE-DEFINED RAN

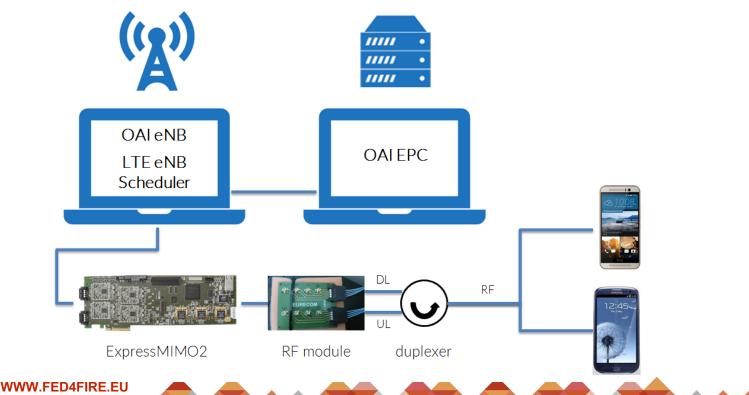
AS A PART OF SOFTWARE-DEFINED RAN

Fed4FIRE+ OC1 Experiment

GOALS

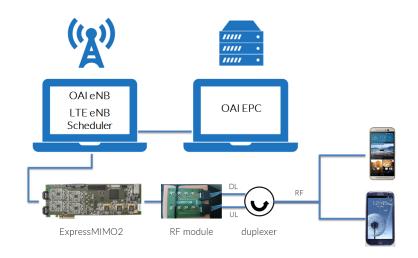
- LTE eNB Scheduler experiments in the environment composed of LTE base station and multiple, simultaneously connected UE nodes
- KPI measurement (such as throughput, packet delay, packet loss, etc) in various environment conditions
- LTE eNB Scheduler testing using open-sorce software for LTE eNB/UE protocol stacks and various SDR front-end devices

CHALLENGES


- Deployment of LTE eNB Scheduler in cooperation with open-source LTE protocol stack – OpenAirInterface (OAI) – and expressMIMO2 platform
- LTE eNB Scheduler and OAI support for COTS UE and UE open-source protocol stack
- KPI measurements for Carrier Aggregation transmission

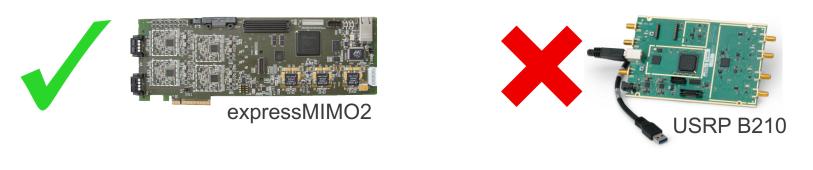
EXPERIMENT SETUP

SW/HW COMPONENTS


- OAI eNB the branch supporting FAPI interface and CA functionality (feature-31-ff-scheduler-api)
- OAI EPC master branch at the newest release
- LTE eNB Scheduler basic and advanced algorithms
- expressMIMO2 + RF module
- 4x COTS UE with test SIM cards
- 2x LTE duplexer, band 7
- USRP B210 for spectrum analysis
- Tools: TestelDroid and aLTErnative (new ISW's product supporting LTE open-source protocol stack)

TECHNICAL RESULTS

 Successful deployment of LTE eNB Scheduler in cooperation with OAI and expressMIMO2


- Carrier Aggregation transmission:
 - 2x CC, band 7, 2x 25 RB
- LTE eNB Scheduler advanced algorithm
- PC nodes:
 - i7 CPU, 4 cores, 3.4 GHz
 - EPC: Ubuntu 16.04, 64-bit
 - eNB: Ubuntu 14.04, 64-bit, 3.19.0-61-lowlatency

TECHNICAL RESULTS

- The range of RF front-end equipment that is compatible with deployed LTE eNB successfully verified
- The experiment showed that OAI (feature-31-ff-scheduler-api) does not support single carrier transmission

TECHNICAL ISSUES

- OAI and ExpressMIMO2 communication fails due to insufficient PC performance
 - only one PC that could achieve the performance allowing to cooperate with ExpressMIMO2 without errors from OAI nor RF front-end side
 - received errors for "missed slots" and "hardware stopped"

TECHNICAL ISSUES

- The LTE Random Access procedure between LTE base station and provided COTS UEs could not be completed
 - Some of the provided smartphones could not cooperate with the deployed base station.
 - RA procedure could not be completed due to the MCC/MNC configuration issue for SIM cards

TECHNICAL ISSUES

- The incomplete control of the environment influenced the experiment reliability, i.e.:
 - Irregular transmissions from commercial base stations at the tested spectrum band
 - ExpressMIMO2 sends the unidentified RF signals
 - The reduced control on the UE behaviour
 - The COTS UE dedicated to the experiment were not always available (e.g. due to uncharged battery).

ADDITIONAL TECHNICAL OUTCOMES

- Additional implementation for LTE eNB Scheduler
 - to increase the efficiency in cooperation with OAI
 - required for bug fixing
- New ideas for better OAI support within aLTErnative (some already implemented):
 - improvements of the eNB and EPC configuration procedures,
 - better support for software compilation parameters,
 - support for the FAPI compilation, which is necessary for LTE eNB Scheduler application.

CONCLUSIONS

- 1. LTE eNB (OAI + LTE eNB Scheduler) works stable, however the KPI measurements could not be performed due to many encountered issues.
- 2. LTE eNB is not yet resistant to the environment conditions it might be a good idea to repeat the experiment in more controllable environment (using e.g. cables, Farraday cage)
- 3. The high PC performance (incl. features for power management, CPU freq scaling and hyperthreading) is required to support expressMIMO2
- 4. OAI software require additional implementation
 - 1. for EPC part in order to fully support LTE attach procedure
 - 2. for eNB part (at feature-31-ff-scheduler-api) in order to support single carrier transmission and all provided COTS UE

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU