

SIMBED: Offline Real-World Wireless Networking Experimentation using ns-3

GOALS

- Repeat and Reproduce past experiments
- Adapt Offline Experimentation (OE) approach for Fed4FIRE+
 - Capture traces of link quality and node positions
 - Reproduce conditions of past experiments using Trace-Based ns-3 Simulations
- Validate OE approach using NITOS and w-iLab.t
- Promote interaction between experimentation and simulation

CHALLENGES

- Which traces to capture and how to capture them?
 - RSSI, Noise Floor, Position, Experiment Settings
- Which comparisons to perform between *Real* experiments, *TraceSim* and *PureSim* to validate OE approach?
 - Goodput, PHY Rate, Packet Loss Ratio, Delay
- How to automatically capture traces and generate Trace-Based ns-3 simulations?
 - User-friendly Framework supporting OE approach

DEMO SETUP

- Zotac Wi-Fi nodes from w-iLab.t2
- Scenarios: Point-to-Point and Multiple Access; Mobile and Fixed; Auto and Fixed Rate
- Different link qualities using 1 AP and 3 STAs
 - Real link distance: 6, 12 and 18 m
 - **TX-Power:** 1, 5, 9, 13 and 17 dBm
- Traffic generation
 - Offered load above link capacity
 - UDP flows

1. AP \leftarrow STA_i

2. AP \rightarrow STA_i

3. AP \leftrightarrow STA_i

Average Goodput – P2P link A $\leftarrow \rightarrow$ C @ 1 dBm

MORE RESULTS

CONCLUSIONS

FUTURE WORK

- TraceSim results are closer to Real than PureSim
 - OE approach uses one SNR sample per real packet received
 - Auto rate and Asymmetric link quality reproduced by TraceSim
- Framework to support OE approach
 - Reduces number of steps needed and possible human error
 - Automates most complex and time consuming tasks
 - Allows sharing physical conditions of past experiments
 - Generates automatic ns-3 scenarios reproducing past conditions

- Conclude second part of the proposed experiments
- Run experiments on **NITOS** testbed
- Publish Journal paper
- Keep improving OE approach
 - Add MIMO support
 - Automatically adapt/fine-tune propagation loss models
- Make Framework to support OE approach available