

MAGIC - F4P03-L06 -

DEMO SETUP CHALLENGE http://robotcontrol.wilab2.ilabt.iminds.be WIRED/WIRELESS NETWORK CHT **Develop multi-platform solutions** iMinds CONTROL/LOG VIDEO mobility SERVER • that only use information available SERVER ROBOT CONTROL info user space nxlog / rsyslog http server in the OS user space nl80211 - SNIR, RSSI, MCS, number of wex cfg80211 log info transmitted packets... cfg80211_ops wext log info mac80211 to address all the challenges of WiFi data ieee80211_ops networks data \land AP other WiFi drivers iwlwifi AP log info WIRELESS NETWORK data data data data GOALS STA STA STA STA

Analysis of the behavior and performance of our multiplatform algorithms specifically designed to

- locate WiFi terminals (<u>without additional hardware</u>) $(x, y) = f(RSSI_{AP1}, RSSI_{AP2}, ..., RSSI_{APn})$
- control the AP transmission power in such a way that the user's QoS is guaranteed (<u>user-oriented TPC</u>)
 min{ AP_{Ptx} }, s.t. QoS = f (SNIR) requirements

- Videostreaming tests (ON/OFF application)
- 5-10 minutes per test
- At least 10 tests per experiment
- Tests with both static and mobile WiFi terminals
- Log information is used to get KPIs
- Statistical methodology: Shapiro-Wilk test, Levene test, and ANOVA/Mann-Whitney U test to check the statistical significance of results

Transmission Power Control of WiFi APs

RESULTS

Localization of WiFi terminals

Mobile STA with different velocities

Mobile STA

5000 6000

- Our algorithm only uses information gathered by APs
- Goal:
 - Achieve an error margin lower than 5m
- Results:
 - Location error below 5m with a probability of 70%
- Future improvements:
 - Include PCA to increase accuracy

• Goal:

- min{ AP_{Ptx} } without QoS degradation (QoS = f (SNIR))

- Algorithm operation:
 - Progresive decrement of AP
 - Fast recovery upon detecting degradation of QoS
- Results
 - 36% of power reduction without QoS degradation
- Future improvements:
 - Filter instant changes in the QoS due to fast fading, operation of the rate control algorithm...

CONCLUSIONS

POST MORTEM

Thanks to the experiments accomplished in this project

- We have been able to do experiments in a very useful laboratory (WiLab)
 - A controlled radioelectric environment
 - With a very versatile mobility testbed
 - With many WiFi devices
- We have been able to measure the behavior and the limit of our algorithms in a real environment
- We have been able to extract very useful information to define the improvement guidelines of our algorithms
- We have acquired new competencies related to the design and execution of experiments with mobile nodes
- The support from the WiLab technical team was also an important perceived value

Technical impact

- This project has speeded-up the testing of our algorithms
- Now, our laboratory scripts perform with mobile nodes
- Our algorithms will be improved taking into account the conclusions drawn in this project

Business impact

- This project has speeded-up the time-to-market of our algorithms
- LOC: now, we can compete in public/private tenders wherein location of WiFi terminals is a requirement
- TPC: we have been able to fulfill our compromise with our most important customer