

AdaHon: DISTRIBUTED ADAPTIVE HONEYPOT FOR CLASSIFICATION **OF ATTACKER PROFILES**

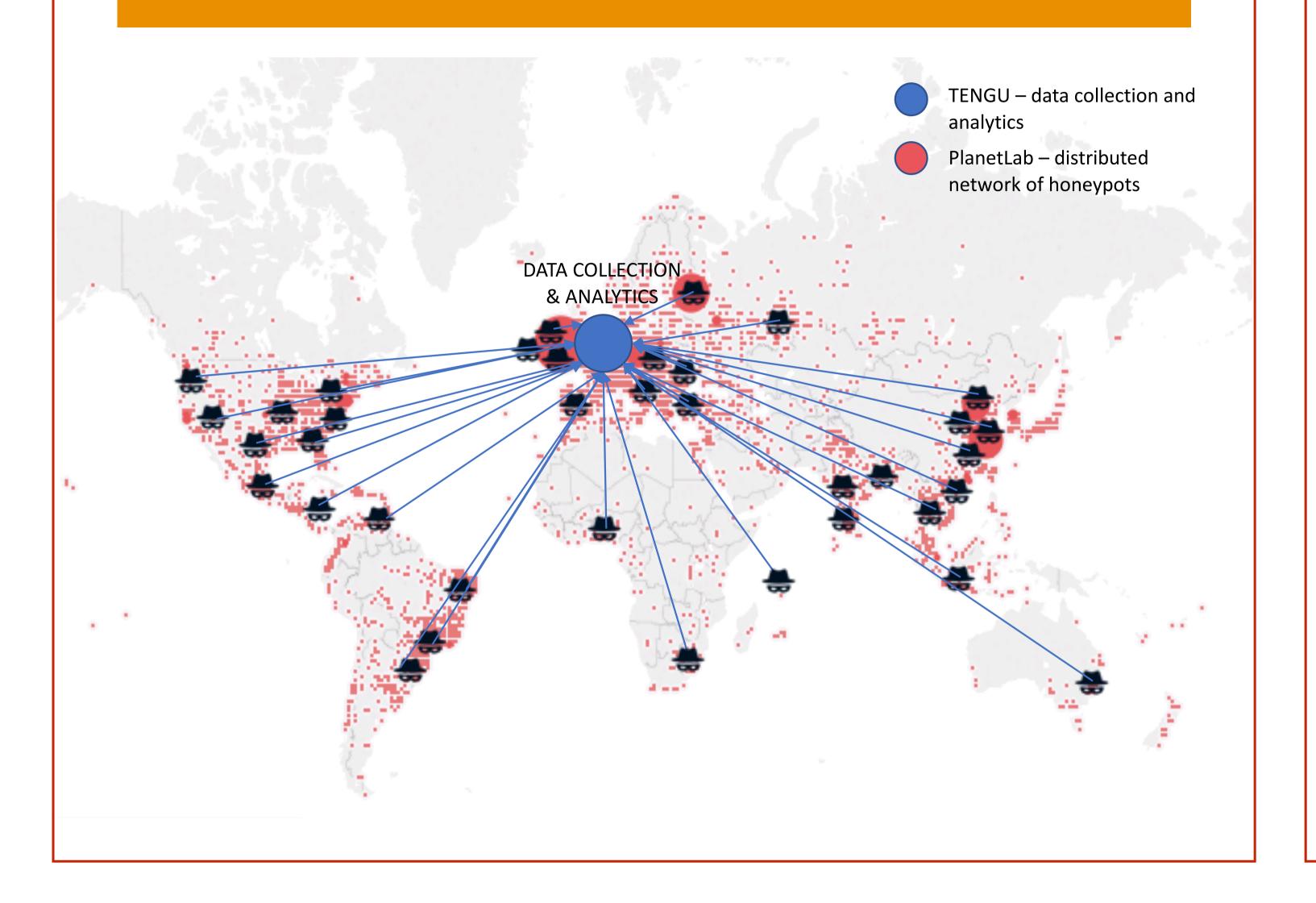
Laboratory for Telecommunications

University of Liubliana Faculty of Electrical Engin

GOALS

To deploy and validate a distributed network of adaptive honeypots, with the purpose of:

- Gaining comprehensive and up-to-date insights into attacker profiles and modern landscape of hacking tools
- Researching adaptivity of honeypots to delay discovery by attackers and expose most attractive characteristics
- Make the collected data sets available as open data


- Design and iteratively validate a large geographically
- distributed network of honeypots through multiple deployment cycles

CHALLENGES

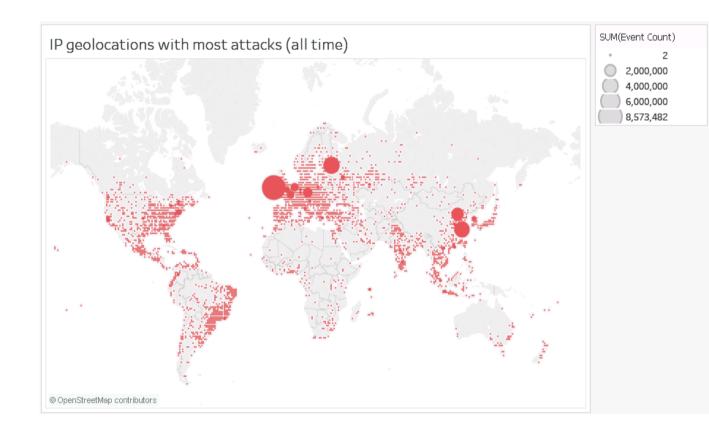
- Experiment with different response variations and decoy strategies to improve behavioral capabilities of the honeypots
- Design attacker profiles and cyber-threat reports using big data analytics and interactive visualizations

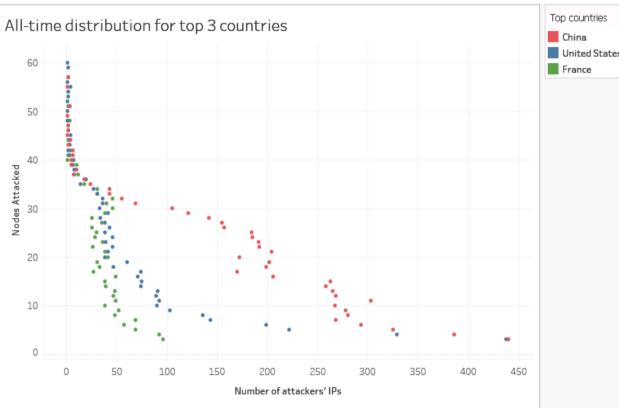
DEMO SETUP

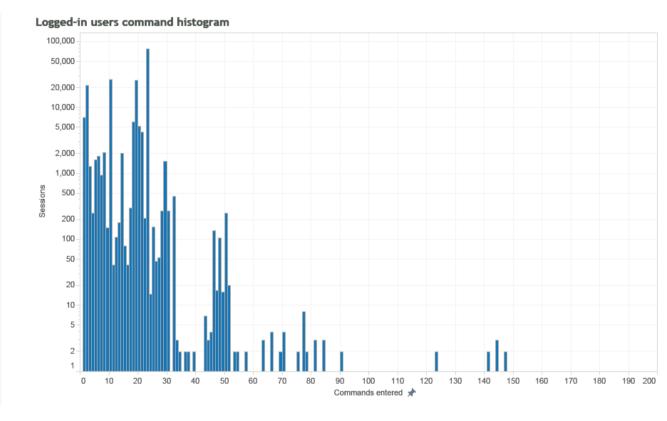
Deployed high-interaction honeypots on 50+ locations

- Deployment automation and iterative upgrades based on PlanetLab's Kubernetes-based EdgeNet
- Data pipeline based on Logstash and ElasticSearch, using **TENGU** infrastructure
- Configured Kibana dashboards for high-level analytics

More than 200 GB of raw data, yielding 11 GB of aggregated, pseudonymized and compressed publicly available datasets


Cyberattack landscape and profiling for 2019/2020


- Exploratory analysis and profiling of the attackers and attacks
- Static and interactive visualizations


MORE RESULTS

Honeypot interactivity and behavioral adaptation experiments

- Experimenting with the effects of reported system parameters (e.g., system resources, hostname) on the attractiveness of the honeypots
- Implementation of a high-interaction honeypot setup (honeypots backed by real Linux containers)
- Cyberattack analytics and profiling
- Long-term: attacking centers (source IP, source location, source ASN), classification of most popular attack scripts, malware landscape
- Short-term: real-time attacks detection and characterization, attack depths, sudden events detection

AS Name	AS RIR							
GLOBALLAYER	RIPE NCC			28	3,601		4,096	
CHINANET-BACKBONE	APNIC		2	21,848				2,097,152
DIGITALOCEAN-ASN	ARIN		16,481					65,536
CNNIC-TENCENT-NET-AP	APNIC		16,338					262,144
OVH	RIPE NCC		14,809					65,536
CNNIC-Baidu-AP	APNIC	7,794						196,608
CHINANET-JS-AS-AP	APNIC	6,582						524,288
FCLOUD-AS	RIPE NCC	6,230					1,024	
AlexHost	RIPE NCC	5,844					1,024	
AS-PUBMATIC	ARIN	5,424					3	2,768
WorldStream	RIPE NCC	3,651					1,024	
TN-BB-AS	AFRINIC	2,563						524,288
HOSTKEY-AS	RIPE NCC	1,982					1,024	
KIXS-AS-KR	APNIC	1,660					3	2,768
INT-NETWORK	RIPE NCC	1,659					4,096	
ARUBA-ASN	RIPE NCC	1,542						65,536
ORACLE-BMC-31898	ARIN	1,423						65,536
CHINA169-Backbone	APNIC	1,289						524,288
CHINANET-SH-AP	APNIC	1,254						1,048,576
MICROSOFT-CORP-MSN-A	ARIN	1,207						2,097,152
VIETEL-AS-AP	APNIC	1,009						1,048,576
		5K 10K	15K 20K	25K 30	к 35К1	100	10,000	1,000,000
			Attack Count				Total AS IPs	

Significant added value of the experiment

Scaling of available cybersecurity infrastructure and informing future investments as well as research and business plans

CONCLUSIONS

- Extending the scope and depth of cybersecurity know-how
- Publication of open data (DOI: 10.5281/zenodo.3687527)
- Very high value of Fed4FIRE+ testbeds, in particular PlanetLab for deployment of a honeynet on a large number of geographically distributed locations

Future plans for infrastructure, partnerships and business

- Scaling of the size, type and geographic distribution of the honeynet and set-up of new research partnerships
- Expanding of the portfolio of cybersecurity projects and experiments, educational courses as well as team members

Future research challenges

- Novel behavior adaptation algorithms using unsupervised learning and high-intensity attack interactions
- IoT and DLT honeypots and cyberattack profiling