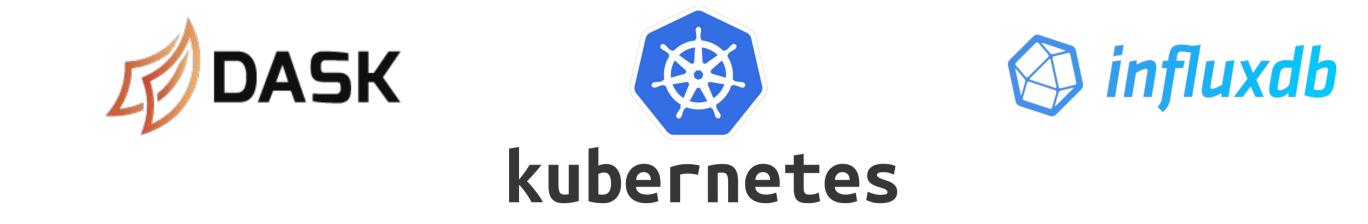
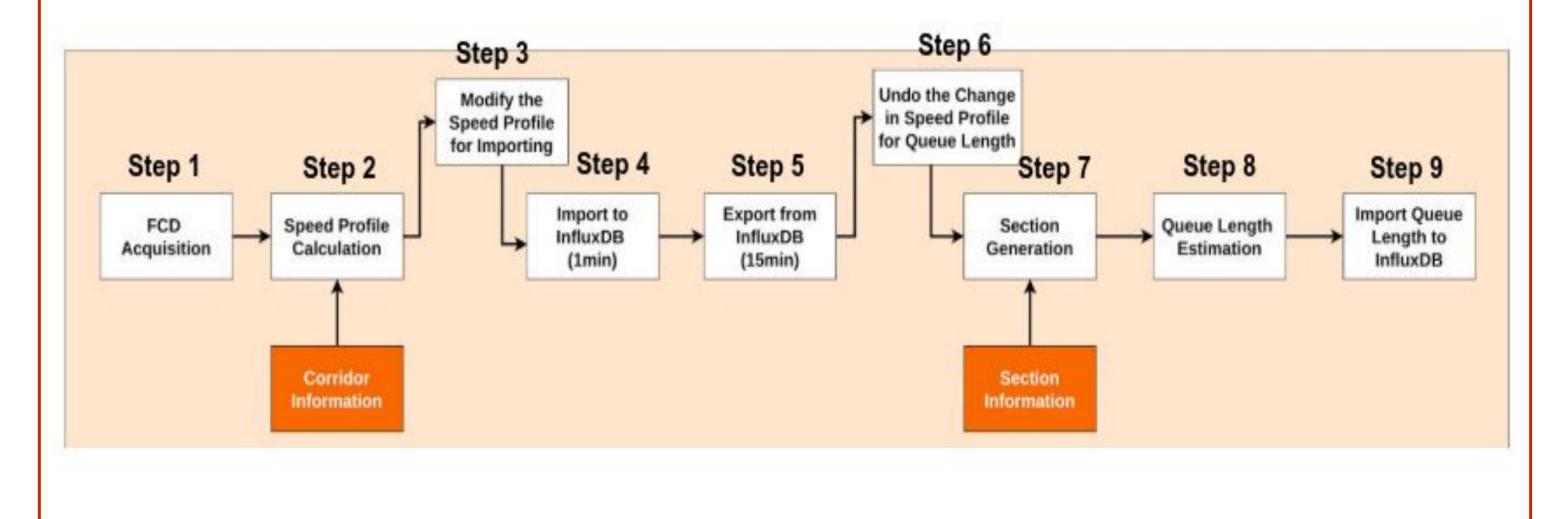


Goals


Challenges

- Gaining experience on distributed computing and real-time data processing
- Integrating the algorithms into the infrastructure
- Real-time processing of FCD
- Using FCD for incident detection and junction management

- Lack of experience in the topic
- Determining optimum hardware properties and tools
- Running algorithms in parallel with flowing data in one minute
- Processing data in the fastest way in terms of computation time


Hardware & Tools

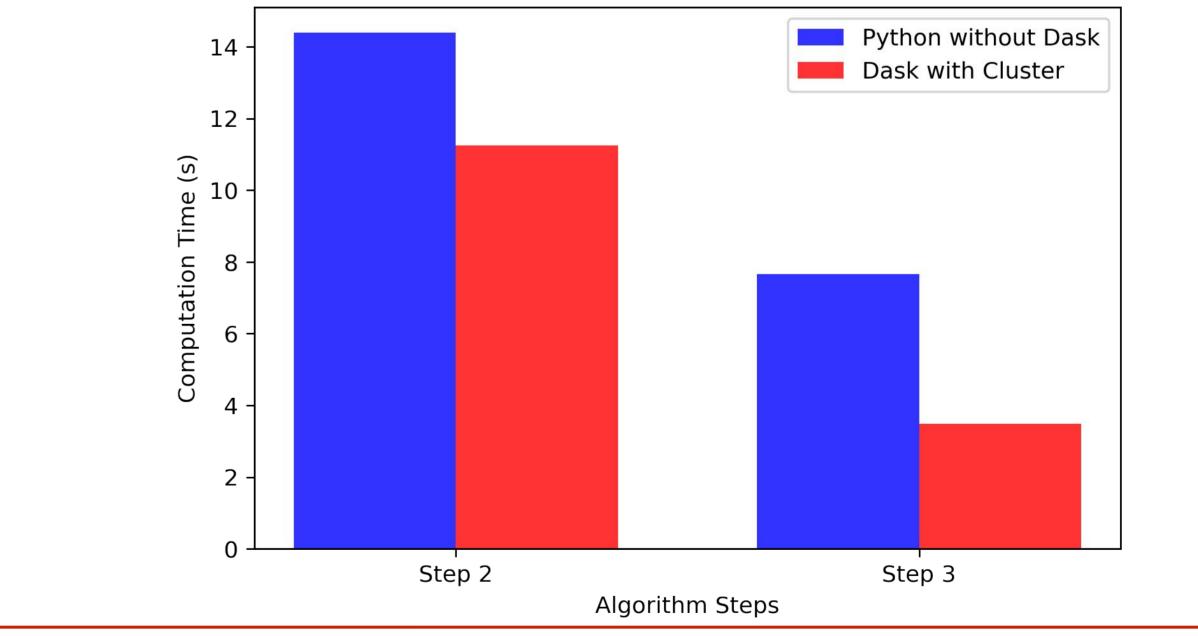
Technologies	Nr of VMs	CPU per VM	Mem per VM	Disk per VM
Dask Kubernetes	4	4 core	16 GB	1 TB
InfluxDB	1	8 core	16 GB	2 TB

• Step 3 and Step 6 cost extra processing time • InfluxDB was not very suitable for our data

More Results

• Needed more virtual machines to increase processing

power


Tengu		Local
Client Scheduler: tcp://my-dask-scheduler:8786 Dashboard: http://my-dask-scheduler:8787/status	Cluster Workers: 3 Cores: 12 Memory: 50.46 GB	Client Scheduler: tcp://127.0.0.1:3 Dashboard: http://127.0.0.1
<pre>def square(x): return x ** 2</pre>	<pre>def square(x): return x ** 2</pre>	
def neg(x): return -x	<pre>def neg(x): return -x</pre>	
<pre>start = time.time() A = c.map(square, range(10000)) B = c.map(neg, A) total = c.submit(sum, B) print(total.result()) end = time.time() print(end-start)</pre>		<pre>start = time.time() A = client.map(squar B = client.map(neg, total = client.submit print(total.result() end = time.time() print(end-start)</pre>
		222282225000

-333283335000 472558736801147

LO	Ca	

Client	Cluster	
Scheduler: tcp://127.0.0.1:34475 Dashboard: http://127.0.0.1:8787/status	Workers: 4 Cores: 12 Memory: 8.20 GB	
<pre>def square(x): return x ** 2</pre>		
<pre>def neg(x): return -x</pre>		
<pre>start = time.time() A = client.map(square, range B = client.map(neg, A) total = client.submit(sum, B print(total.result()) end = time.time() print(end-start)</pre>		
-333283335000 3.784132957458496		

• However, we have managed to run algorithms for 10 corridors of Mersin province simultaneously within one minute thanks to the infrastructure of Tengu

Conclusion

Post Mortem

- The final outputs of the experiment are section-based speed profile and queue length information which were calculated in real-time on urban scale
- Obtaining queue length information in real-time gave us the opportunity to detect incidents with FCD, and we have implemented this algorithm and integrated it with the developed web user interface
- Enhancing know-how with the tools used for the first time and experience gained • Re-applying to the Stage 2 for more complex
 - algorithms and tests with an improved infrastructure Junction management with FCD • Using different tools for performance comparison • Finding the optimal infrastructure
- Contact: Murat Tulgaç, Ece Yılmaz from ISSD

{murat.tulgac,ece.yilmaz}@issd.com.tr