o e

FEDAFIRE

Goals

o Gaining experience on distributed computing and
real-time data processing

e Integrating the algorithms into the infrastructure

e Real-time processing of FCD

e Using FCD for incident detection and junction
management

Hardware & Tools

/7/ DASK @ influxdb

kubernetes
Technologies Nr of VMs CPU per VM Mem per VM Disk per VM
Dask Kubernetes |4 4 core 16 GB 1TB
InfluxDB 1 8 core 16 GB 27T8B

Urban-Scaled Traffic Management Using FCD

Challenges

e Lack of experience in the topic

e Determining optimum hardware properties and tools

o Running algorithms in parallel with flowing data in one
minute

e Processing data in the fastest way in terms of
computation time

e Step 3 and Step 6 cost extra processing time
o InfluxDB was not very suitable for our data

‘Step 3 Step6
J Modify the Undo the Change
Speed Profile » in Speed Profile
 for Importing for Queue Length
Step 1 Step 2 * Step 4 Step 5 * Step 7 Step 8 Step 9
Import to | Export from Import Queue
Aeqiskion —'{ mm}- =2 =1 L‘ cenrton > Estmaton 7| o001 I

Corridor Section

information Information

o Needed more virtual machines to increase processing

power

Tengu Local

Client Cluster

Scheduler: 1cp//127.0.0.1:34475 Workers: 4

Dashboard: htip /127 00 1:8787/status Cores: 12
Memory: 8.20 GB

Client Cluster

Scheduler: tcp.//my-dask-scheduler:8786 Workers: 3
Dashboard: hitp /my-dask-scheduler.8787/status Cores: 12
Memory: 50.46 GB

def square(x):

def square(x): N
urn

return x ** 2

def neg(x):

def neg(x): return -x

return -x

start = time.time()

A = client.map(square, range(10000))
B = client.map(neg, A)

total = client.submit(sum, B)
print(total.result())

end = time.time()

print(end-start)

-333283335000
3.784132957458496

start = time.time()

A = c.map(square, range(10000))
B = c.map(neg, A)

total = c.submit(sum, B)
print(total.result())

end = time.timel()
print(end-start)

-3332833356000
8.472558736801147

More Results

e However, we have managed to run algorithms for 10
corridors of Mersin province simultaneously within one
minute thanks to the infrastructure of Tengu

Bl Python without Dask
B Dask with Cluster

14

Computation Time (s)
= =
~ (@)} (0] o N

N
1

o

Step 2 Step 3

Algorithm Steps

Conclusion

e [he final outputs of the experiment are section-based
speed profile and queue length information which
were calculated in real-time on urban scale

e Obtaining queue length information in real-time gave
us the opportunity to detect incidents with FCD, and
we have implemented this algorithm and integrated it
with the developed web user interface

Post Mortem

e Enhancing know-how with the tools used for the first
time and experience gained
¢ Re-applying to the Stage 2 for more complex
algorithms and tests with an improved infrastructure
o Junction management with FCD
o Using different tools for performance comparison
o Finding the optimal infrastructure

Contact: Murat Tulgac, Ece Yilmaz from ISSD

{murat.tulgac,eceyilmaz}@issd.com.tr

