

Impact of Encryption VPN over LTE/5G Radio & UE Resources (5G-OTTVPN)

GOALS

Study the effect of OTT encryption VPN on:

- i) throughput (overhead due to encryption),
- ii) UE CPU utilization,
- iii) UE power consumption

Compare different encryption protocols

Lack of real-life data of VPN measurements over 5G

VPNs mostly designed for fixed connections, however, mobile networks have different characteristics

CHALLENGES

Some popular VPN protocols might not be suitable for mobile use

DEMO SETUP

Network: LTE (B7) and 5G NSA (n78) R15

Core: ATHONET, RAN: Nokia Airscale Micro

UE: Samsung S10 5G

VPN protocols:

- 1. IPSEC/IKEv2
- 2. WireGuard
- 3. OpenVPN
- 4. MS-SSTP (Microsoft Secure Socket Tunneling Protocol)
- 5. IPSEC/L2TP (IKEv1)

Throughput: additional throughput in the range of 5% - 10% depending on the encryption protocol.

CPU utilization: increase around 5% for the specific CPU capabilities of the terminal in use and the specific throughput (10Mbps).

LTE vs 5G: 5G is more demanding than LTE in terms of CPU & power consumption.

WireGuard protocol seems more lightweight related to the other protocols.

MORE RESULTS

LTE measurements for 10Mbps UL user traffic

	Idle	no VPN	IPSEC- IKEv2	IPSEC- L2TP	WireGuard	OpenVPN	MS-STP
L2							
PDCP throughput (Mbps)		10,201	11,187	11,554	11,277	10,821	10,703
RLC throughput (Mbps)		10,209	11,208	11,570	11,298	10,844	10,725
MAC throughput (Mbps)		10,727	11,678	11,900	11,954	11,503	11,148
РНҮ							
PUSCH throughput (UL) (N	1bps)	11,782	12,627	12,848	12,882	12,369	11,559
UE							
CPU Usage (%)	8,68	12,95	17,08	15,46	14,63	15,88	18,98
Device battery current (A)	-0,0646	0,0058	0,0992	0,0847	0,0626	0,0896	0,1632

5G measurements for 10Mbps UL user traffic

	Idle	no VPN	IPSEC-IKEv2	IPSEC- L2TP	WireGuard	OpenVPN	MS-STP
L2							
PDCP throughput (Mbps)		10,196	11,162	11,526	11,244	10,804	10,750
RLC throughput (Mbps)		10,263	11,288	11,654	11,377	10,932	10,826
MAC throughput (Mbps)		10,747	11,746	12,082	11,843	11,470	11,163
РНҮ							
PUSCH throughput (UL) (Mbps	s)	11,128	11,851	12,258	12,055	11,467	11,165
UE							
CPU Usage (%)	10,77	14,88	20,04	21,61	18,57	19,82	20,99
Device battery current (A)	0,2174	0,2831	0,4106	0,4280	0,3730	0,4686	0,5198

CONCLUSIONS

POST MORTEM

Encryption penalty in throughput, CPU utilization and power consumption seems manageable

Additional throughput (5 – 10%) should be factored-in in the radio planning if widesread encryption use

Additional issues to be studied in the future:

- Comparing setup time of various encryption VPNs
- Connection resilience in various conditions: loss of connection, inter-RAT handover, IP change
- Nested VPNs (VPN within a VPN)
- VPN remote management & statistics