
Fare clic per modificare lo stile del sottotitolo dello
schema

27/01/22
1

GOALS

MORE RESULTS

CHALLENGES

DEMO SETUP RESULTS

CONCLUSIONS POST MORTEM

Chaos@Fire

O1. Chaos engineering test our platform
Test broker and database performance while scaling
up the volume of messages

Test replication persistence resistance
O2. Dimension the infrastructure required for scaling up
O3. Develop a chaos engineering workflow

 Automatize Kubernetes cluster creation

 Deploy HA database and broker

 Replicate persistence

 Stress the cluster using Chaos Mesh

Stress broker and database with a message feeder

Services should remain available at any time

force injection latency → acummulation of messages →
dump rate drop

Automate scaling of consumers

feeder Pod fail on feeder → feeder automatically restarts pods → Drop of feeded messages and automatic recovery
mariadb Pod fail → mariadb cluster malfunctioning and little message queueing → Need of manual restoration

• High availability is a must in a reliable microservice
architechture

• Chaos engineering is an extension of software testing.
Need to implement a full Chaos engineering cycle

• Push platform to break point, check its limits

• Grid5000 is a great infrastructure → test different
software possibilities

Open questions:

• Deploy and test a HA Kafka cluster

• Best practices on replicating influxDB

• Develop high availability for our own code and test its
resilience with learnt chaos engineering methods

• Create self-scalable microservices

	Diapositiva 1

