
Fare clic per modificare lo stile del sottotitolo dello
schema

27/01/22
1

GOALS

MORE RESULTS

CHALLENGES

DEMO SETUP RESULTS

CONCLUSIONS POST MORTEM

Chaos@Fire

O1. Chaos engineering test our platform
Test broker and database performance while scaling
up the volume of messages

Test replication persistence resistance
O2. Dimension the infrastructure required for scaling up
O3. Develop a chaos engineering workflow

 Automatize Kubernetes cluster creation

 Deploy HA database and broker

 Replicate persistence

 Stress the cluster using Chaos Mesh

Stress broker and database with a message feeder

Services should remain available at any time

force injection latency → acummulation of messages →
dump rate drop

Automate scaling of consumers

feeder Pod fail on feeder → feeder automatically restarts pods → Drop of feeded messages and automatic recovery
mariadb Pod fail → mariadb cluster malfunctioning and little message queueing → Need of manual restoration

• High availability is a must in a reliable microservice
architechture

• Chaos engineering is an extension of software testing.
Need to implement a full Chaos engineering cycle

• Push platform to break point, check its limits

• Grid5000 is a great infrastructure → test different
software possibilities

Open questions:

• Deploy and test a HA Kafka cluster

• Best practices on replicating influxDB

• Develop high availability for our own code and test its
resilience with learnt chaos engineering methods

• Create self-scalable microservices

	Diapositiva 1

