

BOOST - Energy-efficient IoT solution for e-scooters fleet management

CHALLENGES

Energy efficiency is important design stage:

- Cell module is a major consumer,
- Not easy to measure,
- Depends on various params inc. location, weather, antenna load.

Challenges:

- Dynamic and complex current profile,
- High dynamic range of pulses 3 orders of magnitude,
- Requirements for utilization of high-end equipment.

DEMO SETUP

Test Setup:

- Keysight N6705C Power Analyser
- Boost IoT device
- 3 Antennas under test

Metrics:

- Current profile
- CCDF, Average
- Latency, RSSI

Test network scenarios

Attachment	Standby	Traffic
Initial connection to the cell network	Energy-saving DRX network connected state	Active up/down-link data exchange with server

3 Antennas under test

We selected 3 GSM-band antennas for tests with similar characteristics inc. gain, polarisation, return loss

single current burst.

Sample rate setting

MORE RESULTS

Measurements

CONCLUSIONS

POST MORTEM

- Accurate measurements are important at any design stage,
- FW code review is necessary to meet system energy-performance requirements,
- Proper instrument can provide insight into system operations,
- Antenna's characteristics influence energy consumption,
- GPRS power profile varies with various external parameters,
- Latency is not a function of antenna performance.

- Finalize a market-ready BOOST solution,
- Pilots & Real feedback,
- Explore 5G IoT-cell technologies inc. Nb-IoT, LTE-M.