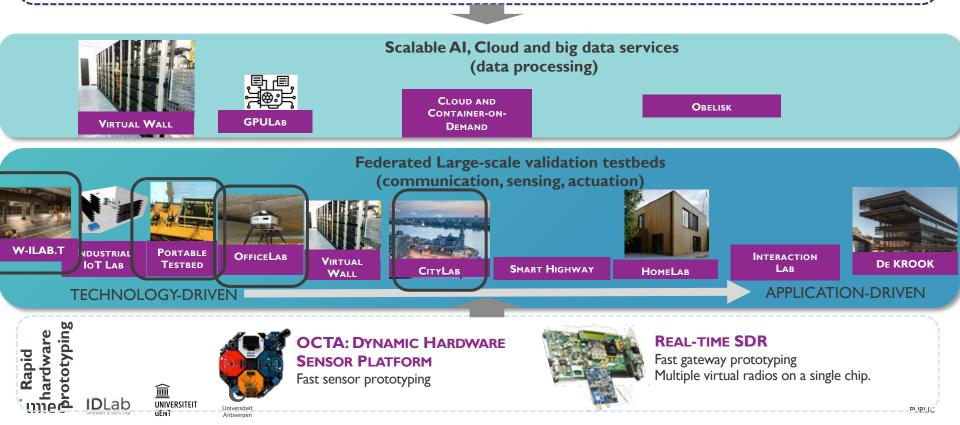
Inec

IMEC WIRELESS TESTBEDS BRECHT VERMEULEN, PIETER BECUE, BART BRAEM

IDLAB, IMEC RESEARCH GROUP AT GHENT UNIVERSITY AND ANTWERP UNIVERSITY - PUBLIC

TESTBED MGMT One click experiment

One click experiment setup & management


DEVICE MANAGEMENT

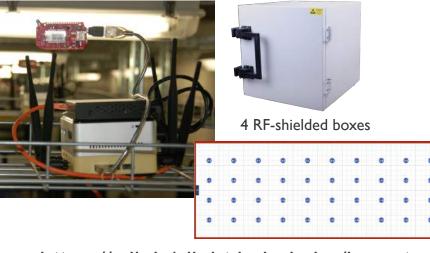
Configuration and maintenance Management and monitoring

SERVICE MGMT

Manage and scale on-demand services

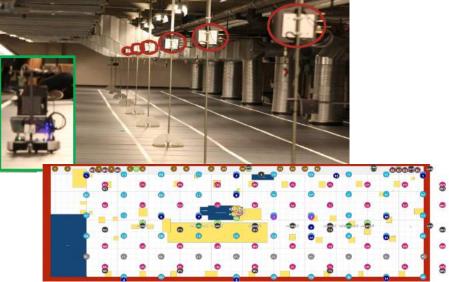
WILAB TESTBED

່ເຫາຍດ


IDLab

2 testbed locations:

http://doc.ilabt.imec.be


- w-iLab.1: datacenter with 44 embedded PCs (WiFi and sensor nodes)
- w-iLab.2: industrial room with 100 fixed +15 mobile nodes (WiFi, sensor, LTE, SDR)

Use cases: wireless, sensor, mobile, networking, SDR, 3rd party hardware

https://wilab1.ilabt.iminds.be/inventory

Antwernen

https://inventory.wilab2.ilabt.iminds.be

WILAB TESTBED

- w-iLab.1
 - 44 x NUC: Intel dual core i5-4250U (2,6GHz), 8GB RAM, 1x 320GB disk, 1x 1Gb/s, 1x 802.11abgn+Bluetooth4.0, 1x 802.11ac, 2x 802.15.4 Zolertia Re-Mote (2.4GHz+sub-GHz) + temp sensor
 - 4 x Qosmotec shielded boxes, connected by fully configurable attenuator patch panel
- w-iLab.2
 - 47 x ZOTAC: Intel dual core Atom D525 (1.8GHz), 4GB RAM, 1x 160GB disk, 1x 1Gb/s, 2x 802.11abgn, Bluetooth 2.0, Environment Emulator + 802.15.4 RM090 sensor (2.4GHz)
 - I0 x DSS: Intel dual core i5, 4GB RAM, 1x 60GB SSD, 2x 1Gb/s, 1x 802.11abgn, 1x 802.11ac, Bluetooth 2.0, Environment Emulator + 802.15.4 RM090 sensor (2.4GHz)
 - 42 x APU: dual core AMD G T40E(IGHz), 4GB RAM, 1x 32GB SSD, 3x IGb/s, 2x 802.11ac, 1x 802.15.4 Zolertia Re-Mote (2.4GHz+sub-GHz)
 - **I5 x MOBILE**: DSS node mounted on top of fully controllable mobile platform
 - 5 x SERVER5P: 8x dual core Intel Xeon 5600, 12GB RAM, 1x 160GB disk, 6x 1Gbs/s
 - **7 x SERVERIG2X**: 8x dual core Intel Xeon1541(2.1GHz),16GB RAM,500GB disk, 2x1Gbs/s, 2x10Gb/s
 - 2 x LTE femto-cell, 7x USRP-N210, 2x USRP-x310, 4x USRP-B210, 4x USRP-B200, 3x WARP, 4x zc706 ZYNC SDR, 2x ZED zync SDR
- Internal layer 2 interconnectivity (EU, US, Brazil, Asia)
- Images for Ubuntu, Debian
- Full root access so everything can be installed by yourself

EMBEDDED PC'S

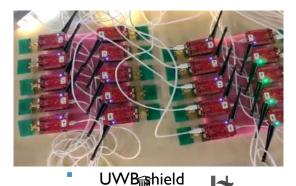
_	70740				
Feature	ZOTAC	APU Id4	DSS/MOBILE	SERVER I P/SERVER 5P	SERVERIGZX
CPU type	Intel Atom D525 (2cores, I.8GHz)	AMD G series T40E APU (2cores, IGHz)	Intel core i5	8x dual Intel Xeon Processor 5600 Series	Intel Xeon Processor D-1541 (2.1GHz, 8 cores, 16 threads)
RAM (GB)	4GB DDR2 800MHz PC2-6400 CL6	4GB DDR3 1066MHz	4GB DDR2 800MHz PC2-6400 CL6	12GB DDR2 800MHz PC2-6400 CL6	16GB DDR4 2133MHz
Hard disk	160GB (2.5", SATA, 7200RPM, 16MB)	32GB (SSD,mSATA)	60GB (2.5", SATA, SSD)	160GB (2.5", SATA, 7200RPM, 16MB)	500GB (3.5", SATA, 7200RPM, 64MB)
WiFi	2x802.11abgn	2x802.11ac	1×802.11abgn, 1×802.11ac	No WiFi cards/dongles	No WiFi cards/dongles
Sensor node	EE + RM090	Zolertia Re-Mote	EE + RM090	No EE/sensor node	No EE/sensor node
Bluetooth	USB 2.0 Bluetooth (Micro Cl2-v3.0 EDR)	No Bluetooth	USB 2.0 Bluetooth (Micro Cl2-v3.0 EDR)	No Bluetooth	No Bluetooth

6

Universiteit

Antwerpen

CONSTRAINED IOT DEVICES


Zolertia Re-Mote

່ເຫາຍເ


- 2.4GHz / 868MHz
- UWB-shield (in-house developed)
- Currently deployed:

IDLab

- Temperature sensors
- Many other sensors possible

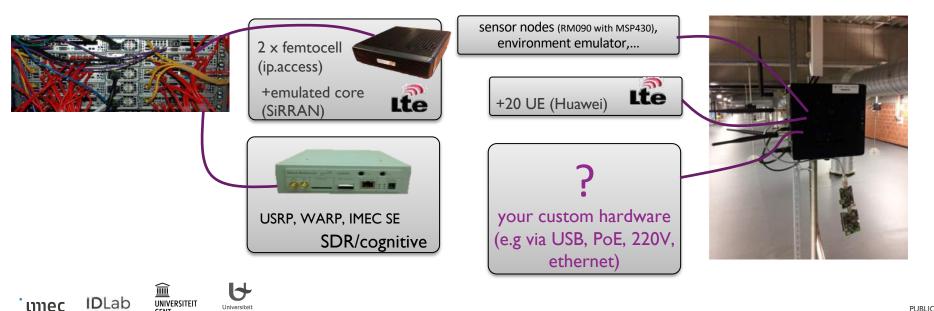
Antwerpen accuracy

Zolertia ZI 2.4GHz

Nordic Semiconductor nRF52 DK

BLE development kit

RM090
2.4GHz


- **Environment Emulator**
 - Battery emulation
 - 6KHz sample rate
 - Generate I/O events on DUT
 - RM090/Re-Mote

- Sparklan WPEA-251N(BT)
 - 802.11a/b/g/n
 - Bluetooth 4.0 LE/ 3.0 HS/ 2.1 EDR standard

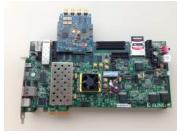
W-ILAB.2 PLENUM CLEANROOM SPECIAL NODES AND PROXY USE

- some embedded nodes are used as proxy to connect to specialized hardware
- more powerful servers available for special purposes (16x 10Gbit interfaces)

Iniversiteit

Antwerpen

WILAB – NEW SDR EXTENSIONS



USRP x310 (x2) 10Gbps fiber to switch 10 Gbps Ethernet to server

USRP B210 (x4) USRP B200 (x4) USB3.0 to Intel NUC

SERVER (x7) Intel Xeon Processor D-1541 (2.1GHz, 8 cores, 16 threads) **I6GB DDR4 RAM**

NUC (x8) Intel Core i5-4250U (3M Cache, up to 2.60 GHz) 8GB DDR3 RAM

7C706 with Zync-7000 SoC (x3) IGbps Ethernet to APU 2 x USB (UART + JTAG) APU AMD G-series (IGHz)

Only for programming & debugging

Xilinx ZedBoard Zync-7000 SoC (xl) 2 x USB (UART + JTAG)

SERVER

Intel Xeon Only for programming & debugging

IDLab

່ເຫາຍດ

 $\widehat{\blacksquare}$

GENT

UNIVERSITEIT

-

Antwerpen

https://doc.ilabt.imec.be/ilabt/wilab/index.html

open-source 4G from handset to core

imec iLab.t documentation

TABLE OF CONTENTS

Virtual Wall

Wireless Testlab and OfficeLab

Overview

Getting started

Tutorials and howto's

WILAB - 802.11AX

Source: Cisco.com

Intel 802.11ax 2x2 MIMO 2.4Gbps

Compex 802.1 I ac Wave 2 4x4 MIMO 1.73Gbps

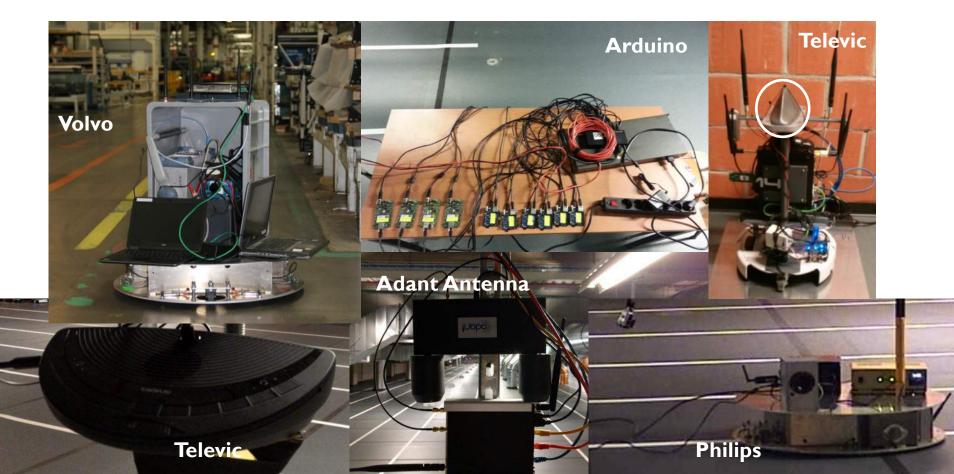
WILAB - 802. | | AX

L		1	
	Cataly	st 9117	

802.11ax 8x8 MU-MIMO 5Gbps backbone

Ubiquiti Unifi XG

802.11ac Wave 2 4x4 MU-MIMO 10Gbps backbone titte


Ruckus Zoneflex R730

802.11ax 8x8 MU-MIMO 5Gbps backbone

Will be added to testbed as non-imageable devices

THIRDPARTY HARD- AND SOFTWARE TESTS

IOT - OFFICELAB

Universiteit

Antwerpen

GENT

44 Intel NUC

8GB RAM / 320GB HDD 802.11a/b/g/n + BT 4.0 802.11ac (3x3)

PUBLIC

OFFICELAB

່ເຫາຍເ

Office environment with 110 embedded PCs spread over 3 office floors Use cases: wireless, sensor, networking, 3rd party hardware, indoor localization (UWB)

https://wilab1.ilabt.iminds.be/inventory

Antwernen

UNIVERSITE

http://doc.ilabt.imec.be

OFFICELAB

- **iGent building**: floor 9, 10, 11
- IIO x NUC: Intel dual core i5-4250U (2,6GHz), 8GB RAM, 1x 320GB disk, 1x 1Gb/s,
 - Ix 802.11abgn+Bluetooth4.0
 - Ix 802.11ac
 - BLE development kit (only floor II)
 - Ix 802.15.4 Zolertia Re-Mote (2.4GHz + sub-GHz) with temperature sensor
 - Extendable with many other sensors (light, motion, gas, noise, ...)
 - Indoor localization with Zolertia Re-Mote + UWB shield (on floor 11)
- Internal layer 2 interconnectivity (EU, US, Brazil, Asia)
- Images for Ubuntu, Debian
- Full root access so everything can be installed by yourself
- IoT-toolkit for management of large sensor experiments

PORTABLE TESTBED

Portable wireless test infrastructure with 15 embedded PCs (WiFi/sensor) & SDR equipment. Easily extendable with 3rd party hardware.

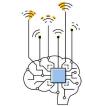
Use cases: wireless, sensor, networking, on-site testing, rapid deployment

PORTABLE TESTBED

- I5 x NUC: Intel dual core i5-4250U (2,6GHz), 8GB RAM, 1x 320GB disk, 1x 1Gb/s,
 - Ix 802.11abgn+Bluetooth4.0
 - Ix 802.11ac
- USB extensions (depending on needs):
 - 802.15.4 Zolertia Re-Mote (2.4GHz + sub-GHz) with temperature sensor
 - SDR hardware: USRP B200/B210-mini, USRP B200/B210

Network extensions:

- SDR hardware: USRP x310, ZYNC zc706
- Integrate 3rd party hardware by connecting to testbed nodes over USB or Ethernet
- Standalone server & network able to work offline or even server-less
- Battery packs can power NUC up to 10 hours
- Images for Ubuntu, Debian
- Full root access so everything can be installed by yourself


unec

CITYLAB IDLAB ANTWERP

IDLAB, IMEC RESEARCH GROUP AT GHENT UNIVERSITY AND ANTWERP UNIVERSITY – PUBLIC

CITYLAB APPLICATIONS WIRELESS + EDGE AI

Multi-radio Connectivity

 Test wireless multi-technology coexistence in unlicensed spectrum

 $\widehat{\blacksquare}$

່ເກາຍດ

• Enabling multi-technology orchestration and collaboration to improve performance

4

Antwernen

AI Edge computing

- Taking advantage of speed/latency at the edge
- Enabling computing, AI and orchestration in a distributed fashion

Outdoor, flexible multi-technology

CITYLAB: A CONNECTIVITY INFRASTRUCTURE MULTI-TECHNOLOGY CONNECTIVITY

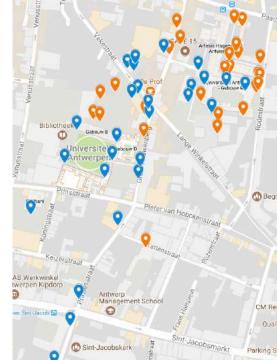
- Large deployment operational outdoor
 - 35 CityLab gateways in City Campus
 - 15 additional gateways pending
 - 15 in Smart Zone for connectivity services
- Focus on coexistence testing in unlicensed spectrum and edge computing
 - Outdoor edge computing

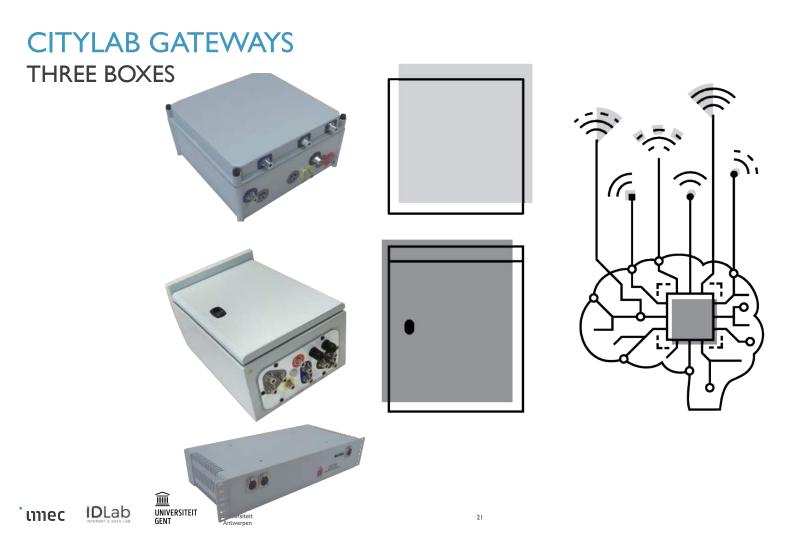
UNIVERSITE

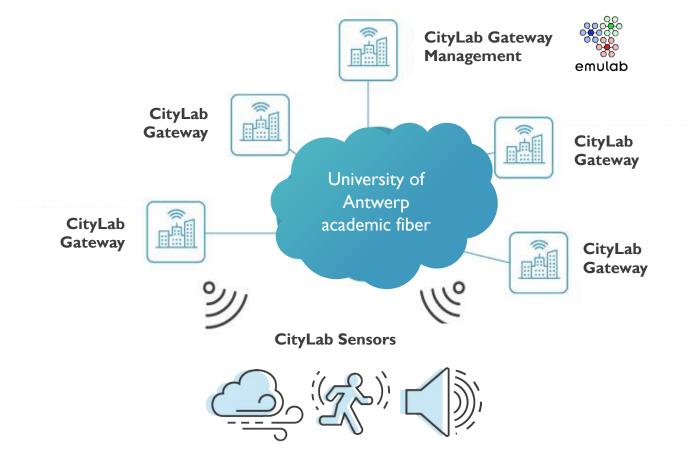
່ເກາຍດ

Diah

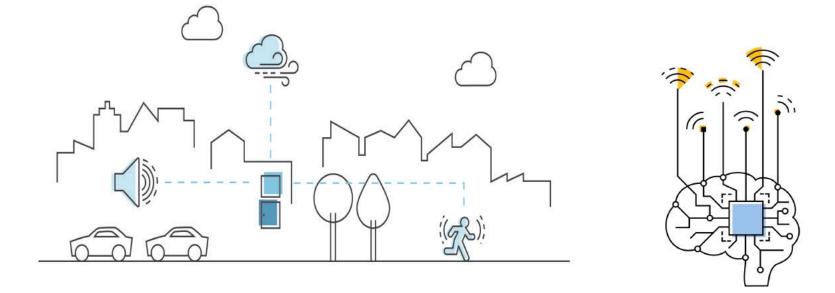
Supporting WiFi, 802.15.4, Bluetooth and sub-GHz


Antwerner


Backed up by commercial LPWAN backends (LoRa, SigFox, NB-IoT)


Sint-Jacobskerk WiFi 802.1 lac on 2.4 GHz and 5GHz WiFi 802.11n on 2.4 GHz and 5GHz Bluetooth 4.0 IEEE 802.15.4 on 2.4 GHz and IEEE 802.15.4g on 868MHz

DASH7 on 433MHz and 868MHz LoRaWAN on 868MHz (client only)



TYPICAL EXPERIMENT: FED4QOE HOW TO DETERMINE QOE IN A WIRELESS ENVIRONMENT

- Fed4FIRE+ open call experiment by Allbesmart (PT)
 - How to translate wireless network characteristics into QoE
 - Validated their QoE measurement framework remotely

CITYLAB FUTURE: TOWARDS A SMART INFRASTRUCTURE SMART CITY SENSORS – MULTI-RADIO CONNECTIVITY – EDGE COMPUTING

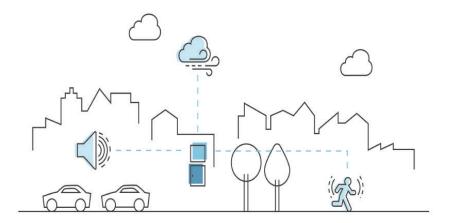
Going towards MEC, air quality + PIR + noise sensors and virtualization

Ī

GENT

UNIVERSITEI

Universiteit


Antwerpen

IDLab

່ເຫາຍເ

CITYLAB FUTURE: TOWARDS A SMART INFRASTRUCTURE SMART CITY SENSORS – MULTI-RADIO CONNECTIVITY – EDGE COMPUTING

- NIC switch
 - replace ath I 0k gradually with ath 9k
- MEC
 - Implement edge orchestration framework
- Virtualization
 - allocation of radios instead of full nodes, with sharing and load management
- Antwerp-Ghent connectivity
 - GRE tunnel
- Cameras
 - Strongly considering introducing cameras for AI research ground truth, work in progress for privacy
- Sensors:
 - considering deployment of air quality PIR noise sensors with NFV-like control, TBC
- Licensed technologies:
 - considering the introduction of licensed technologies, with portable testbed and considering industry partnerships

embracing a better life

