

Grant Agreement No.: 732638
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D2.4: Testbed requirements,
developments and integrations

Work package WP 2

Task Task 2.2

Due date 31/12/2017

Submission date 10/11/2018

Deliverable lead Imec

Version 4

Authors
Brecht Vermeulen (imec), Wim Van der Meerssche (imec), Thijs Walcarius
(imec), Radomir Klacza (SU)

Reviewers Peter Van Daele (imec)

Abstract This deliverable describes the specific requirements, developments and
integrations that were done in the first 21 months to add new testbeds to the
federation.

Keywords Testbed integration, federation, testbed support

Ref. Ares(2018)5816648 - 14/11/2018

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 2 of 56

Document Revision History

Version Date Description of change List of contributor(s)

V1 15/08/2018 TOC Brecht Vermeulen (imec)

V2 1/11/2018 First complete version Brecht Vermeulen (imec), Wim Van
der Meerssche (imec), Thijs
Walcarius (imec), Radomir Klacza
(SU)

V3 8/11/2018 Almost final version Brecht Vermeulen (imec), Wim Van
der Meerssche (imec), Thijs
Walcarius (imec), Radomir Klacza
(SU)

V4 10/11/2018 Final version Brecht Vermeulen (imec), Wim Van
der Meerssche (imec), Thijs
Walcarius (imec), Radomir Klacza
(SU)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
Federation for FIRE Plus (Fed4FIRE+); project’s consortium under EC grant agreement
732638 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2017-2021 Fed4FIRE+ Consortium

ACKNOWLEDGMENT

This deliverable has been written in the context of a Horizon 2020 European research project,
which is co-funded by the European Commission and the Swiss State Secretariat for
Education, Research and Innovation. The opinions expressed and arguments employed do
not engage the supporting parties.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 3 of 56

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FED4FIRE+ project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 4 of 56

EXECUTIVE SUMMARY

This deliverable describes the specific requirements, developments and integrations that were
done in the first 21 months to add new testbeds to the federation. In total 21 testbeds were
added to the federation, of 13 different types/implementations.

The federation template that we support together with Geni (Geni Control Framework, GCF)
has been further extended, a.o. with general GDPR support. This results in a Docker AM which
is fully functional for docker resources (including IPv6).

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 5 of 56

TABLE OF CONTENTS

DISCLAIMER .. 2
COPYRIGHT NOTICE... 2
ACKNOWLEDGMENT .. 2

1 TESTBED FEDERATION EFFORTS ... 8
1.1 GENERAL DEVELOPMENT FOR FEDERATING TESTBEDS 8
1.2 FEDERATED TESTBEDS .. 9
1.2.1 FUTEBOL Brazil/UFES ... 9
1.2.2 FUTEBOL Brazil/UFMG .. 9
1.2.3 Futebol Brazil/UFRGS ..10
1.2.4 FUTEBOL VTT ...10
1.2.5 OWL TUD ..10
1.2.6 ARNO Sant'Anna Pisa Testbed ..11
1.2.7 FIT R2Lab ..11
1.2.8 ESAT MM Testbed ...11
1.2.9 City of Things Antwerp ...11
1.2.10 Other testbeds ..12

2 SUPPORT FOR TESTBEDS WANTING TO FEDERATE 13

3 INFORMATION FOR AM DEVELOPERS .. 14
3.1 ADDING AN AM TO JFED ...14
3.1.1 Requirements ...14
3.1.2 Server X509 Certificate ..16
3.1.3 Allowing access to federated users ..17
3.1.4 Configuring the AM GetVersion call ..18
3.1.5 Using the jfed scanner tool ...19
3.1.6 Local files for adding testbeds ..21
3.1.7 Adding to jFed for all users ...21
3.1.8 Adding your AM to one of the experiment GUI “icons” ..23
3.2 HANDLING TESTBED SPECIFIC TERMS & CONDITIONS (I.E. HANDLING GDPR)
 23
3.2.1 jFed support for Testbed Specific Terms & Conditions (T&C)23
3.2.2 jFed T&C integration javascript details ...24
3.2.3 Example: standalone T&C site ...25
3.2.4 Example: AM with T&C site built in ...26
3.2.5 Add T&C site info to central jFed config..26
3.2.6 Make the AM reject users that did not approve the Terms & Conditions27
3.3 DEBUGGING YOUR AM ...27
3.3.1 jFed Probe GUI ..28
3.3.2 jFed automated tester ..28
3.3.3 Permanent monitoring: Fedmon ...33
3.4 RSPEC DETAILS FOR AM DEVELOPERS ...34
3.4.1 General ..34
3.4.2 Choosing your component manager urn...34
3.4.3 RSpec basics: sliver_type and exclusive ..36
3.4.4 RSpec basics: Disk Images ..37
3.4.5 RSpec basics: Specific nodes ..38
3.4.6 RSpec basics: Hardware type ..38
3.4.7 Advertisement Examples: Bare metal access ...39
3.4.8 Advertisement Examples: Simple VM’s ..40

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 6 of 56

3.4.9 Advertisement Examples: Complex VM’s: multiple sizes ..41
3.4.10 Advertisement Examples: Specialised hardware connected to single VM box41
3.4.11 Advertisement Examples: Combining Bare metal and VMs on a single node42
3.4.12 Request RSpec ..43
3.5 STITCHING DETAILS FOR AM DEVELOPERS ..44
3.5.1 General ..44
3.5.2 “Real” Stitching: automated multiple hops and VLAN translation44
3.5.3 Stitching alternative: Dedicated Ext. Network Connection46
3.5.4 Stitching alternative: “tunnels” over internet using link_type47

4 DOCKER-AM AS EXAMPLE AM ... 49
4.1 SUPPORTED AGGREGATE MANAGER FEATURES ...49
4.2 HOW TO INSTALL THE AM ? ..49
4.2.1 Dependencies ..49
4.2.2 Download source code ...50
4.2.3 Configure AM ...50
4.2.4 Configure a DockerMaster..51
4.2.5 Generate certificate and key ...52
4.3 STARTING THE AM ..53
4.4 TRUST YOUR C-BAS INSTALLATION ..53
4.5 CONFIGURING A REMOTE DOCKERMANAGER (OPTIONAL)..............................53
4.5.1 Configure the remote ..53
4.5.2 Configure the AM ...54
4.6 HOW TO ADAPT THIS AM TO YOUR INFRASTRUCTURE ?54
4.7 DEVELOPMENT NOTES ..55
4.8 ADDITIONAL INFORMATIONS ..56
4.9 TROUBLESHOOTING ..56

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 7 of 56

LIST OF FIGURES

FIGURE 1: OVERVIEW OF JFED RESOURCE ICONS, INCLUDING NEW ICONS FOR
RASPBERRY, 5G, IOT AND GTS (GEANT TESTBED AS A SERVICE) 8

FIGURE 2: THE NEW RASPBERRY PI AND IOT ICONS IN JFED10

FIGURE 3: THE NEW ICONS IN JFED, INCLUDING THE 5G ICON11

FIGURE 4: A LINK BETWEEN CITY OF THINGS NODES IN JFED11

FIGURE 5: JFED AUTOMATED TESTER: OVERVIEW OF TESTS30

FIGURE 6: JFED AUTOMATED TESTER: RUN A SPECIFIC TEST31

FIGURE 7: JFED AUTOMATED TESTER: TEST RESULTS ..32

FIGURE 8: JFED AUTOMATED TESTER: TEST RESULT DETAILS33

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 8 of 56

1 TESTBED FEDERATION EFFORTS

1.1 GENERAL DEVELOPMENT FOR FEDERATING TESTBEDS

The documentation aimed at assisting testbed owners when federating their testbeds, was
extended on many points, based on feedback from the testbeds. This documentation can be
found at: https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers (see also section 3)

Inside the jFed experiment GUI tool, support for different link types was extended to manage
the needs of the Futebol testbeds. jFed will now automatically select the right type of link,
based on which nodes (of which testbeds) are connected with each other. This makes it much
easier for users, and reduces the need to know all technical details about some testbed links.

Figure 1 gives an overview of the current support resource types (icons on the left), and
examples of the new types in the canvas at the right.

Figure 1: Overview of jFed resource icons, including new icons for Raspberry, 5G, IoT and GTS (Geant
testbed as a service)

https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 9 of 56

1.2 FEDERATED TESTBEDS

1.2.1 FUTEBOL Brazil/UFES

The FUTEBOL testbed of the Federal University of Espírito Santo was federated during April
2017 to Dec 2017. This testbed offers access to VMs. A lot of assistance was required, but no
new jFed developments were needed.

1.2.2 FUTEBOL Brazil/UFMG

The FUTEBOL testbed of the Universidade Federal de Minas Gerais was federated begin
2017. This testbeds offers access to a wide range of experimental hardware: USRP (software
defined radio) hardware, TelosB sensors, bare metal wifi nodes, and bare metal Raspberry Pi
nodes.

jFed was extended with more complex support for hardware and sliver types. This allowed

adding more flexible “icons” in the jFed GUI. A Raspbery Pi () and an IoT

icon () were then added and linked to the appropriate configuration of the
UFMG testbed.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 10 of 56

Figure 2: The new Raspberry Pi and IoT icons in jFed

1.2.3 Futebol Brazil/UFRGS

The FUTEBOL testbed of the Federal University of Rio Grande do Sul was federated begin
2017. This testbed offers access to USRP (software defined radio) hardware, VMs, and bare
metal Raspberry Pi nodes.

The federation work required for FUTEBOL UFMG was developed in parallel for this testbed,
which had the same requirements. The new Raspberry Pi icon in jFed was linked to the
appropriate configuration of the UFGRS testbed.

1.2.4 FUTEBOL VTT

The FUTEBOL VTT testbed of the Technical Research Centre of Finland was federated in
April 2018. Little federation support was needed, and no new jFed development was required.

1.2.5 OWL TUD

The Online Wireless Lab (OWL) testbed of the Technische Universität Dresden was federated
in March 2018. A lot of testbed side debugging was required.

The biggest issue turned out to be the very long image load time. jFed was modified to handle
long load times in a more user friendly way.

A 5G icons was added to jFed, and the testbed was linked to this icon.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 11 of 56

Figure 3: The new icons in jFed, including the 5G icon

1.2.6 ARNO Sant'Anna Pisa Testbed

The ARNO Testbed at Sant’Anna Pisa was federated between June and Aug 2017. The
testbed is based on the docker AM, and it took some testbed side debugging to get it federated.
The testbed offers access to LTE equipment. No jFed development was required for this
tested.

1.2.7 FIT R2Lab

The R2Lab testbed of FIT was federated May 2018. This testbed allows access to wireless
hardware. No new jFed development was needed, and the testbed was added under the 5G
icon.

1.2.8 ESAT MM Testbed

The ESAT Massive MIMO Testbed of KU Leuven was federated between October and
December 2017.

We helped develop the modified GCF AM for this testbed, as some complex feature were
needed. jFed was also extended to support some of these features, in particular, support for
connecting to windows nodes using RDP was added, and support for working with gateway
nodes added by the testbed (not requested by the user) was added. The testbed was added
under the 5G icon in jFed.

1.2.9 City of Things Antwerp

The City of Things testbed in Antwerp was federated. This testbed required little federation
work. Because the testbed uses special links by default (gre links), jFed was extended to
clearly differentiate between different link types in the GUI.

Figure 4: A link between City of Things nodes in jFed

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 12 of 56

1.2.10 Other testbeds

Two development and test servers were added (for University Bristol and UFMG). These are
not production testbeds that can be used by federation users.

A lot of new US ExoGeni and InstaGeni testbeds were federated. Adding these to the
federation required almost no effort:

• ExoGENI CIENA HQ

• InstaGENI ODU

• InstaGENI Hawaii

• InstaGENI VT

• InstaGENI UVM

• InstaGENI Louisiana

• InstaGENI UTDallas

• InstaGENI UCSD

• InstaGENI Utc

• InstaGENI University of Washington

• InstaGENI Colorado

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 13 of 56

2 SUPPORT FOR TESTBEDS WANTING TO FEDERATE

For testbeds wanting to federate we have the following things in place:

• Documentation how to start: https://doc.ilabt.imec.be/jfed-documentation-
5.9/amdevelopers (see also section 3).

o This includes specific information on GDPR inclusion for testbeds:
https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers#handling-
testbed-specific-terms-conditions-i-e-handling-gdpr

• Tools for testing the Aggregate Manager: jFed Probe and jFed Automatic tester
(https://doc.ilabt.imec.be/jfed-documentation-5.9/otherjfedtools.html#overview)

• An example/template Aggregate Manager with docker containers. This is used as well
as front-end for an existing testbed. See https://github.com/open-multinet/docker-am

• Documentation on the AM API: https://github.com/open-multinet/federation-am-api and
https://fed4fire-testbeds.ilabt.iminds.be/asciidoc/federation-am-api.html

• Documentation on the Slice Authority and Member Authority APIs:
https://github.com/open-multinet/CommonFederation-SA-MA-API and https://geni-
nsf.github.io/CommonFederationAPI/CommonFederationAPIv2.html

• Continuous monitoring and testing, including detailed information when clicking
through: https://fedmon.fed4fire.eu (see also Deliverable 3.2 for more information on
this).

https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers
https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers
https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers#handling-testbed-specific-terms-conditions-i-e-handling-gdpr
https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers#handling-testbed-specific-terms-conditions-i-e-handling-gdpr
https://doc.ilabt.imec.be/jfed-documentation-5.9/otherjfedtools.html#overview
https://github.com/open-multinet/docker-am
https://github.com/open-multinet/federation-am-api
https://fed4fire-testbeds.ilabt.iminds.be/asciidoc/federation-am-api.html
https://github.com/open-multinet/CommonFederation-SA-MA-API
https://geni-nsf.github.io/CommonFederationAPI/CommonFederationAPIv2.html
https://geni-nsf.github.io/CommonFederationAPI/CommonFederationAPIv2.html
https://fedmon.fed4fire.eu/

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 14 of 56

3 INFORMATION FOR AM DEVELOPERS

If you develop an AM (typically supporting the Geni v3 AM API), to enable your testbed to be

used from tools such as jFed, there are some practical things you need to be aware of.

This documentation goes into details about how to add your AM to jFed, how to test your AM

with jFed, and gives some info on the advertisement and request RSpec that your AM might

want to support.

3.1 ADDING AN AM TO JFED

This section explains how to add details about your AM to jFed. This is needed in order to use

the AM from the jFed software.

First of all, note that this section is about ading an AM, an Aggregate Manager (sometimes

also known as CM, “Component Manager”). If you want to setup and use your own user and

slice authority (SA and/or MA), there are some extra complications not mentioned here. (Feel

free to ask us for additional info if you are in this case.) Note that if you federate your AM with

the fed4fire SA and MA, there is no need to configure jFed to use the SA/MA of your testbed

(if you have one), so there is also no need to configure it in jFed.

In short, this section assumes that you have a fed4fire account, and you will login to jFed with

this account, in order to use your AM.

3.1.1 Requirements

You need a few things before you get started:

• A server to run the AM software on.

• A publicly reachable IP for that server. This needs to be either an IPv4 or an IPv6

address. We recommend both.

• A DNS name for that server, that resolves to the publicly reachable IP addresses of the

server. (Recommendation: It’s nice if the DNS name refers to your testbed and is

specific for your AM. Example: am.mytestbed.example.com) (Note: A DNS name is not

strictly required, but very highly recommended)

• Choose a URN for your AM. This is of the

form: urn:publicid:IDN+DNSNAME+authority+am where your replace DNSNAME by

the DNS name of your AM.

(Example: urn:publicid:IDN+mytestbed.example.com+authority+am). If you don’t have

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 15 of 56

a DNS name for your server use a globally unique name for your testbed instead. It’s

not recommended to use an IP address instead, though that can work. Never

use localhost or 127.0.0.1, and never use the default value of the AM software you use.

(For more info, see Choosing your component manager urn)

• Choose a port at which you server will run. There is no standard port in the

specification, so a lot of different ports are used in practice (12369, 8010, ...). We

recommend using port 443, if that is not in use by anything else. The advantage of

using the default https port is that it is reachable through most firewalls, and the protocol

is in fact using https.

• You need a X509 Server Certificate, because the AM server uses https. This can be a

self signed certificate (jFed stores a list of these to make it work safely). However, in

that case, make sure you configure the fields in your self signed certificate correctly.

See the next section for more details.

• You probably have testbed resources that you want to make reachable to

experimenters using SSH. There are 2 options, either you need to public IP addresses

that you can assign to these nodes when needed (IPv4 or IPv6), or you need to have

one machine with a publically reachable IP address (IPv4 recommended) act as a

gateway. In both cases, make sure you have these address(es) available. You can

combine the gateway machine with the machine on which the AM runs, but for security

reasons, this is not recommended.

An example of these choices for the imec Virtual Wall2 testbed:

• IP: 193.191.148.179

• DNS name: wall2.ilabt.iminds.be

• URN: urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm So the URN including the

DNS name as TLD/TLA part of the URN. “authority” as “type” of the URN, and “cm” as

“name” part of the URN. (We actually recommend “am” as name instead of “cm”, but

both are fine.)

• Server certificate:

o Not self signed in our case, but signed by a trusted root.

o “Subject Name” contains CN=www.wall2.ilabt.iminds.be, as well as details

about our address and organisation

o “Subject Alternative Name”

contains DNS:www.wall2.ilabt.iminds.be, DNS:boss.wall2.ilabt.iminds.be, DN

S:authority.ilabt.iminds.be

https://doc.ilabt.imec.be/jfed-documentation-5.9/amdevelopers#choosing-your-component-manager-urn

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 16 of 56

• Our server runs at port 12369, because emulab already uses port 443 for another

webserver, with different SSL settings.

• The full URL at which our AM is reachable

is: https://www.wall2.ilabt.iminds.be:12369/protogeni/xmlrpc/am/3.0

• Experimenters can reserve servers at our AM. All of these are then reachable with SSH

using public IPv6 addresses. We also have a pool of IPv4 addresses which users can

assign to servers if needed. In addition, we have a gateway (bastion.test.iminds.be,

which has both an IPv4 and IPv6 address), which can be used by experimenters that

do not have IPv6.

3.1.2 Server X509 Certificate

An AM uses a message format specified in Geni AM specification, which is sent over XML-

RPC, which is sent over HTTPS with client authentication. So an AM runs at an HTTPS server

(= HTTP over SSL) that is configured to require client authentication.

This means that the firsts step is to correctly setup the SSL server. The first step is to configure

the servers X509 certificate. This certificate is used to identify the server to the users. Because

only the server has the private key matching the certificate, users can setup a secure

connection.

For SSL on the public internet, it is required that your server’s X509 certificate is signed by a

trusted root. All browsers have a list of these trusted roots. This is in short how the internet is

made secure.

jFed alsp uses the internet’s trusted roots, so if your server certificate is signed by these, that

should be enough. However, for convenience, jFed also allows you to use a self signed X509

certificate. You can then add this self signed certificate to the list of certificates that jFed trusts,

and everything will work without requiring the hassle of aquiring a “real” X509 certificate signed

by a trusted root.

There are some best practices to take into account, regarding the self signed X509 certificate

that you generate for your AM:

• “Subject” field of the certificate must contain a “CN” that is the hostname of the server

(NOT and IP, the DNS hostname!)

• The “X509v3 Subject Alternative Name” section, must contain a “DNS” entry, which is

the hostname of your server (NOT and IP, the DNS hostname!)

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 17 of 56

Another best practice derived from these, is that your AM needs a DNS name, not just an IP

address.

Note that you can also add your AM to jFed if these guidelines are not respected. Try to at

least have a meaningful “Subject” “CN”, and avoid a “Subject” “CN” like “localhost” at all cost.

3.1.3 Allowing access to federated users

3.1.3.1 Federate with fed4fire User and Slice Authority

Your AM needs to be configured so it is federated with the fed4fire user and slice authority.

How to do this depends on the AM software.

General instructions: You need to add the fed4fire root certificate to the list of trusted

authorities.

AM specific instructions:

• For GCF, you need to put the root certificate file in the gcf trusted_roots directory.

Example command to do

this curl http://users.atlantis.ugent.be/bvermeul/wall2.pem > ~/

.gcf/trusted_roots/wall2.pem

The result of configuring this is:

• Your AM will allow (client-authenticated) SSL connections from fed4fire users. If not

configured correctly, your AM might terminate SSL handshake from fed4fire users (so

no HTTP data is even sent). If correctly configured, your AM will know for each

connection that an fed4fire user is connected. This is called “authentication”.

• Your AM will accept user and slice “credentials” that is received from fed4fire users. It

will know what fed4fire allows these users to do (typically, a slice credential will tell the

AM a user can reserve resources). This is called “authorization”.

3.1.3.2 Firewall

You’ll need to make sure some ports are reachable:

• Your AM is listening on one or two ports, and these should be publicly reachable.

http://users.atlantis.ugent.be/bvermeul/wall2.pem

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 18 of 56

• If your testbed nodes are reachable directly, the necessary ssh port on each node

should be publicly reachable. If you use a testbed specific ssh proxy/gateway, only that

proxy should be publically reachable.

• Your AM should be ping-able from the fed4fire monitoring domain, so it should allow

ICMP for at least that domain.

• Your testbed OML monitoring should be able to create outgoing connections to the

fed4fire monitoring domain. (Allow outgoing TCP to flsmonitor.ilabt.iminds.be:3003)

Note: The fed4fire monitoring connections will come from:

• 2001:6a8:1d80:2031:225:90ff:fe1d:1c68

• 193.191.148.194

Only for ICMP you could choose to allow only these (but you can also allow public access).

For AM and SSH access, the ports need to be publicly reachable anyway. Don’t rely too much

on these not changing, you probably need to allow the whole subnet.

3.1.4 Configuring the AM GetVersion call

Your AM needs to be configured to return the correct info in the GetVersion reply. This is not

a critical step, and it can be skipped. But it is a good practice to get this right. It also makes the

jFed scanner work better.

The GetVersion call is a call that the scanner uses to retrieve basic server info. It is defined

in the AM specification. The results contains a lot of info, most of which will be automatically

filled in correctly by the server software. Experience shows that the following fields have to be

checked for correctness:

"urn": "urn:publicid:IDN+example.com+authority+am",

"geni_api_versions": {

 "2": "https://example.com/am/2",

 "3": "https://example.com/am/3"

}

You need to make sure that:

• The URN is correct. That includes the hostname part (example.com in the example

above), and the name part am in the example above. The name should be am, or cm.

The URN must always match the expected URN in

the component_manager_urn attribute in the request RSpec.

• The geni_api_versions URLs must point to the correct server URL(s). This must

be the URL at which the AM is publically available. Make sure that:

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 19 of 56

o The protocol is https

o The port is correct

o The path is correct

o The hostname is not localhost or 127.0.0.1.

o Preferably, the hostname is not an IP address but a DNS hostname.

o Multiple URLs are allowed if the server supports multiple AM versions. But this

is not required. Do make sure however that at least the version contacted is

listed. That is, if you connect to https://example.com/am/2 it is at least

expected that "2": "https://example.com/am/2" is listed.

3.1.5 Using the jfed scanner tool

Note

This section assumes you are using linux or MAC. Instructions for windows are very similar.

The jFed scanner can be used to automatically detect basic AM server settings, and store

them for use by the other jFed tools. This way, you can add use an experiment AM to your

local jFed, and test it.

While the scanner can be a usefull tool, it fails in some scenarios (as it is hard to test all strange

AM configurations). It is also not frequently tested, so it can break in some releases. Finally, it

is not aimed at end users, and is thus not a user friendly tool. For these reasons, if you

experience problems with it, don’t hesitate to contact us.

You can find the current stable jFed Scanner GUI in this archive.

After downloading the archive, and extract it to a directory. Then execute scanner-

gui.jar.

Example commands:

 $ wget -nv http://jfed.iminds.be/releases/develop/VERSION/jar/jfed_gui.tar.gz

2017-01-10 11:27:28 URL:http://jfed.iminds.be/releases/develop/VERSION/jar/jfed_gui.tar.gz

[25654644/25654644] -> "jfed_gui.tar.gz" [1]

 $ tar xfz jfed_gui.tar.gz

 $ cd jfed_gui

 $ java -jar scanner-gui.jar

Once the scanner tool has started, log in using your fed4fire account.

In the next screen, fill in the Aggregate Manager URL, and click the Scan button.

http://jfed.iminds.be/downloads/stable/jar/jfed_gui.tar.gz

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 20 of 56

Requirements for the URL:

• It needs to be HTTPS

• Do not forget the correct port

• Do not forget to add the full path to the AM endpoint

• Preferably, use a DNS hostname, not an IP address

When the scan is completed, you end up on the Scan Overview tab. Here, in the ideal

case, you’ll see 4 green OK statuses. If not, something went wrong. In

the Call Logs and Debug Logs tab, you can find debug info which can help when

something goes wrong.

In the Scan Output tab, all information the scanner gathered is shown. It is sometimes

needed to uncheck the checkboxes next to any incorrect or uneeded information. But usually,

you do not need to do anything here.

In the Security tab, you will find the X509 certificate of the server. You need to verify if this

is indeed the certificate of your server, and if that is so, you need to check the checkbox next

to I trust all of the certificates above.

Then, click on the Show Results button.

You will see a JSON snippet containing the info that jFed will use. You can edit the following

fields:

• id: This should be a very short unique ID for the testbed. It should only contain letters,

no spaces or special characters.

• longName: This is the “human readable” name of your testbed. This name may contain

spaces and special characters.

• server/name: This is the “human readable” of the testbed server. This name may

contain spaces and special characters. (It can be the same as the testbed longName)

• defaultComponentManagerUrn: This is the URN of your AM. Make sure it is

correct.

If you click on Add to local jFed, the JSON snippet will be stored

in ~/.jFed/extra_testbeds/<id>.json (where <id> is the ID you chose for the

testbed). All jFed tools will load files from that dir to add additional testbeds.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 21 of 56

3.1.6 Local files for adding testbeds

Using local files, you can add your AM to jFed.

When the jFed scanner has succesfully scanned a server, it shows a button “Add to local jFed”,

which will write such a file.

These files are stored in the jFed config dir, in the extra_testbeds dir. On Linux this is

in ~/.jFed/extra_testbeds/.

Below is an example of such a file with dummy values. You can also look at the global jFed

configuration (see link in next section) for real examples.

Content of ~/.jFed/extra_testbeds/mytestbed.json:

{

 "id": "mytestbed",

 "longName": "My Brand New Testbed",

 "defaultComponentManagerUrn": "urn:publicid:IDN+mytestbed.org+authority+am",

 "allowLinks": false,

 "servers": [

 {

 "name": "My Brand New Testbed",

 "certificateChain": "-----BEGIN CERTIFICATE-----\nMII... SERVER CERTIFICATE HERE

...\n-----END CERTIFICATE-----\n",

 "urnTld": "mytestbed.org",

 "baseUrl": "https://am.mytestbed.org/",

 "flags": [

 "featureExecuteAndInstallService",

],

 "services": [

 {

 "api": "Geni.AM",

 "apiVersion": "3",

 "url": "https://am.mytestbed.org/",

 "urn": "urn:publicid:IDN+mytestbed.org+authority+am",

 "@type": "Service"

 }

],

 "defaultComponentManagerUrn": "urn:publicid:IDN+mytestbed.org+authority+am",

 "@type": "Server"

 }

],

 "@type": "Testbed"

}

3.1.7 Adding to jFed for all users

The jFed team can also add the same info about your AM, to the “global” jFed config. That

enables the use of your AM for all jFed users. The global jFed configuration is available

at https://flsmonitor-api.fed4fire.eu/testbed?embed=true

Contact us to add your AM.

https://flsmonitor-api.fed4fire.eu/testbed?embed=true

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 22 of 56

You do not need to have a local wokring config, but that helps.

The minimal info you need to send us is:

• The URL at which your AM runs (the full URL, including hostname, port and path)

• The name you want to see for your testbed inside jFed and at our monitoring site

• An example request RSpec (which shows us the sliver_type(s) used and other info)

• Does your testbed support (or even require) specifying disk images in the request

RSpec?

• Does your testbed support (or even require) assigning specific nodes (component_id

attibute) in the request RSpec?

• Does your testbed support (or even require) specifying hardware types in the request

RSpec?

• Are links between nodes of your testbed supported?

• Does your testbed support “stitched” links? (If you’re unsure what that is, your testbed

doesn’t support them.)

Other info which is usefull to send us is:

• Which “icon” in the jFed experiment GUI is the best match for your testbed nodes (ex:

physical node, VM, wireless, ...)?

• For security reasons, it is recommended to also send your server certificate (in PEM

format). We can also retrieve the certificate ourself, but theoretically, that could be

intercepted.

• The coordinates of the testbed (latitude, longitude and country)

• Info on the organisation running the testbed (full name, latitude, longitude, country,

address, link to logo, link to website)

• Additional info about your testbed: link to documentation, link to testbed description

and/or other general testbed information.

• If your testbed has a web interface (where users can login and control the testbed) in

addition to the AM, you can send us that link as well.

• The email address(es) of the “primary” contact(s) of the testbed. If we need to contact

someone about the testbed, we use these emails.

• The email address(es) of the “technical” contact(s) of the testbed. For technical

questions about the testbed, these emails are used. These emails also are used for

automatic mails about the tests, and in the future, testbed specific bugreports will also

be sent here. Let us know wether or not you want the technical contact(s) of the testbed

to receive automated emails when the testbed goes down.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 23 of 56

• The email address(es) of the GDPR contact(s) of the testbed. Anything related to the

GDPR we will send here.

• The URN(s) of the users that may have admin access to some of the data we store

about your testbed. This is currently not used, but we plan on using this later to allow

you to restart tests, enable/disable tests or edit testbed info. This is typically the URN

of the users you use to login to jFed.

• Which software does your testbed AM use? Typical options are: emulab, gcf,

openstack, ...

(A lot of email addresses are mentioned above, but typically, they are all just the same single

email address.)

3.1.8 Adding your AM to one of the experiment GUI “icons”

The jFed Experimenter GUI has a graphical editor, where you can drag “icons” to the canvas

and in this way easily configure an experiment. Each of these icons has their own list of relevant

testbeds.

Note that you do not need these icons to test your AM using the jFed Experimenter GUI: after

you added your testbed to jFed, you can directly edit the XML Rspec, and everything will work.

It is currently not possible to manually add a testbed to one of these jFed icons in your local

jFed install. Adding testbeds to the “icons” can only be done by the jFed developers. When

you contact us to add your testbed to jFed for all users, we will discuss which icon(s) it needs

to be added too, and add it for you.

3.2 HANDLING TESTBED SPECIFIC TERMS & CONDITIONS (I.E.
HANDLING GDPR)

3.2.1 jFed support for Testbed Specific Terms & Conditions (T&C)

jFed has extensive support for sites with Testbed Specific Terms & Conditions. These sites

can integrate with jFed, but this is not required. T&C sites need to be registered in the jFed

central config.

The basic requirements for such site are that they store if a user has consented to the T&C.

So some form of DB is typically needed. When a user has not yet consented, the testbed can

choose to dissalow the user access. For this functionality, the testbed AM needs to access the

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 24 of 56

consent DB. Users need to identify themself to T&C sites, the only logical method of doing is,

is using the fed4fire method: https client certificates.

T&C sites can use jFed specific javascript, to:

• Detect if they are running inside jFed: if (window.jfed)

• Report to jFed if the use has consented (and for how long), or

not: jfed.decline(); and jfed.approveWithDateISO8601(\"2018-05-

19T13:05:00+02:00\"); (and other date options)

• Request jFed to close the browser window: jfed.close();

jFed also works with sites that do not use any of the specific javascript. In this case, jFed will

open the site in a window, and when it is closed will assume that the user has accepted the

terms..

3.2.2 jFed T&C integration javascript details

When jFed loads the T&C site, it is useful to let jFed know if the user has already accepted the

T&C before, or not. However, when the site javascript runs, jFed has not yet had time to inject

its code into the site. To solve this, you can use this method:

function initJFed() {

 if (window.jfed && window.jfed.decline) {

 //Here, you would check if the user has accepted the terms and conditions, or not.

 //if the user has accepted, let jFed know

 //window.jfed.approve(); //uses default timeframe configured in the jFed central config

 //if the user hasn't accepted yet, let jFed know

 window.jfed.decline();

 }

}

//run this to automatically contact jFed when its javascript becomes available

if (window.jfed) {

 initJFed();

} else {

 //window.jfed is not (yet) available

 //trick to make browser call initJFed() when window.jfed becomes available.

 Object.defineProperty(window, 'jfed', {

 configurable: true,

 enumerable: true,

 writeable: true,

 get: function() {

 return this._jfed;

 },

 set: function(val) {

 this._jfed = val;

 initJFed();

 }

 });

}

There are multiple methods to signal to jFed that the user has accepted the T&C:

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 25 of 56

//report approval of the T&C to jFed (without specifying end date of approval)

//(This will cause the default duration configured for this specific testbed in the central jFed

config to be used)

jfed.approve();

//report approval of the T&C to jFed, and specify a date in ms since epoch (javascript

Date.getTime() returns this)

jfed.approveWithDateInMillisecondsSinceEpoch(Date.now()+(24*3600*30*1000));

//report approval of the T&C to jFed, and specify the relative date in days from now

jfed.approveDaysFromNow(7);

//report approval of the T&C to jFed, and specify a data in ISO8601 format (RFC3339 is a subset

of ISO8601)

jfed.approveWithDateISO8601(\"2018-05-19T13:05:00+02:00\");

You can also report that the T&C are not accepted:

//report decline of the T&C to jFed

jfed.decline();

You can also request jFed to close the browser window:

//close the jFed T&C window from within javascript

jfed.close();

When something goes wrong, and no javascript is used, jFed reverts to the fallback. This

means that when you close the window, jFed will assume that the user has accepted the T&C.

Because of this, it’s not a bad idea to initially call jfed.decline();.

3.2.3 Example: standalone T&C site

A standalone T&C site must:

• Use https with client authentication enabled. Since the site has no purpose without a

valid user, it makes sense to make SSL user authentication mandatory (this is a setting

in the server config).

• The site must be configured to allow users of the fed4fire authority access. (This is

done by trusting the root certificate for wall2 in the server config)

• The site must extract the user URN from the certificate used to authenticate.

• When a user declines or approves the T&C, this decision must be stored in a DB at the

server.

• Optionally, the site can use the jFed T&C integration javascript mentioned above.

Alternatively, you could use a regular http/https site, and using a seperate service that takes

care of the 4 first points above.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 26 of 56

The technology chosen for the site backend (php, python, java, ...) and the specific DB used

are up to the testbed to decide.

(We might add an example of such a standalone site in the future)

You can use the example in the next section as a partial example for a standalone site: Take

a look

at terms_conditions.html and terms_conditions.js in https://github.com/wvd

emeer/docker-am/tree/gdpr/gcf_docker_plugin/terms_conditions

3.2.4 Example: AM with T&C site built in

It’s also possible to integrate the site directly in the AM code. One of the advantages is that the

site can then easily run at the same domain and port of the AM. The SSL authentication is also

already configured as the AM requires the same.

To demo this, we’ve modified a GCF based site, the docker AM. Looking at these changes,

you should be able to modify any gcf based site in the same way. The main files for this addon

are here: https://github.com/wvdemeer/docker-

am/tree/gdpr/gcf_docker_plugin/terms_conditions The exact changes that were needed can

be seen here: https://github.com/open-multinet/docker-am/compare/master...wvdemeer:gdpr

3.2.5 Add T&C site info to central jFed config

Send us the following info:

• What is the URL of the T&C site for your testbed?

• Do these T&C need to be approved per user? Or per project or even slice? (we

recommand per user if possible)

• For per user approval, how long does the approval remain valid (i.e. how long before

the user need to re-approve)? (in days)

We will add this info to the central jFed config, so that jFed will send users to the T&C site

when they start an experiment.

In case you update the conditions on the T&C site, let us know. We can change the version in

the config, which will cause jFed to require all users to visit the T&C site again.

Technical details: We add the following to the testbed config:

https://github.com/wvdemeer/docker-am/tree/gdpr/gcf_docker_plugin/terms_conditions
https://github.com/wvdemeer/docker-am/tree/gdpr/gcf_docker_plugin/terms_conditions
https://github.com/wvdemeer/docker-am/tree/gdpr/gcf_docker_plugin/terms_conditions
https://github.com/wvdemeer/docker-am/tree/gdpr/gcf_docker_plugin/terms_conditions
https://github.com/open-multinet/docker-am/compare/master...wvdemeer:gdpr

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 27 of 56

"gdprInfo": {

 "grpdUrl": "https://example.com/terms_conditions/index.html",

 "acceptPeriodInDays": 365,

 "acceptSubject": "USER",

 "version": "1",

 "@type": "GDPRInfo"

 }

Here’s an example: https://flsmonitor-api.fed4fire.eu/testbed/iminds-docker

3.2.6 Make the AM reject users that did not approve the Terms & Conditions

It should be sufficient to only add a check to the Allocate call.

In case the user is not known to have approved the T&C of the testbed, we strongly recommend

using this error message:

{

 "output": "[T&C-APPROVAL-MISSING] Approval of the Terms & Conditions is required in order to

use this testbed. Please visit https://example.com/termsandconditions",

 "code": { "geni_code": 7 }

}

Notes:

• The above is a JSON representation of the XML-RPC reply, the actual reply is off

course in XML. (But JSON is much easier to read.)

• geni_code 7 is used. This code is the general code for “REFUSED” “Operation

Refused”

• Be sure to include “[GDPR-CONSENT-MISSING]” for automatic detection of this error

by jFed. jFed can then show the appropriate error dialog.

• It is also important to include a human readable message, and a link to the actual terms

and conditions of the testbed. This is essential for users that do not use jFed.

• The value field is ommitted above, but it may be included. It is optional because this

is an error reply.

• An AM may optionally include an am_type and am_code. You are free to use what

you want for these.

3.3 DEBUGGING YOUR AM

jFed offers some tools that can help a lot when debugging your AM.

Once your AM is running, we can add it to our fedmon monitor.

https://flsmonitor-api.fed4fire.eu/testbed/iminds-docker

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 28 of 56

3.3.1 jFed Probe GUI

The jFed Probe GUI is a tool for manually calling servers. Very low level calls can be made,

and low level replies are visible. This tool requires knowledge of the communication APIs, and

the tool itself is not a very user friendly GUI. It can be very valuable for testbed developers that

wish to debug their server.

While you can execute all calls by filling in all details manually, for convenience, the probe GUI

can automatically execute user and slice related calls with minimal user input:

• Start the Probe GUI and login

• Expand “API Wrappers”

• Expand “Automatic User and Slice API Wrapper”

• Select “getLocalUSerCredentials”

• Click the big “Call” Button. After a while, you’ll see that a call was done, and it’s results

will appear. This call contains the user credential. (the jFed probe has stored it and will

automatically fill it in for next calls.)

Now that you have a user credential, you can use it to create a slice:

• Go to the “Automatic User and Slice API Wrapper” methods, and select “createSlice”

• In the form to the left, fill in “sliceName”, choose an expire time (2 hours by default)

• Click to check the checkbox before “subAuthName”, and fill in the EXACT name of your

project as “subAuthName”. (“sub authority” and “project” are the same thing)

• Click the big “Call” Button. After a while, you’ll see that one or more call are done, and

their results will appear. This last call contains the slice credential. (the jFed probe has

stored it and will automatically fill it in for next calls.)

If you go to any AM call now, you will see that the slice name and credential are filled in by

default.

3.3.2 jFed automated tester

The Automated Testing GUI: This tool is used to run tests scenarios on servers. This is only

useful for server developers, and it is not a very user friendly GUI. It includes simple tests,

such as veryfing if the GetVersion reply of an AM server is correct, and more complex tests,

such as verifying if an AM can correctly provision a node, and if that node can be logged in to

using SSH.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 29 of 56

First start the automated tester. You can find the latest jFed releases here. Download the “jFed

GUI (archive)” from that page.

After downloading the archive, extract it to a directory. Then execute automated-

testing-gui.jar.

Example commands:

$ wget -nv http://jfed.iminds.be/releases/develop/VERSION/jar/jfed_gui.tar.gz

2017-01-10 11:27:28 URL:http://jfed.iminds.be/releases/develop/VERSION/jar/jfed_gui.tar.gz

[25654644/25654644] -> "jfed_gui.tar.gz" [1]

$ tar xfz jfed_gui.tar.gz

$ cd jfed_gui

$ java -jar automated-testing-gui.jar

You can also use the installer, and install the automated tester that way.

When you start the automated tester, you need to log in with your user account.

On the next page, you need to select the testbed you want to test, and the test you want to

run. In the example below, we are testing the “Virtual Wall 1” testbed. The chosen test is

“TestNodeLogin”. This test will create a new slice at the logged in user’s authority. Then it will

contact the tested testbed, it will execute Allocate and Provision calls, wait for the

nodes to become ready, and then try to log in to the nodes. Finally, no matter wether the tests

fails or succeeds, a Delete call is made to free any resource reservations.

http://jfed.iminds.be/releases/develop/?C=N;O=D

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 30 of 56

Figure 5: jFed automated tester: overview of tests

When the testbed (“Target Authority” at the top of the window) and the test are selected (in the

“Type of Test” tab), you can optionally go to the “Test Arguments” tab. This tab lists all possible

options for the tests. For a lot of tests, these are a lot of options, and they are undocumented.

For the “TestNodeLogin”, you typically do not need to change anything. Some interesting

configuration options are:

• fixed_rspec: You can specify a custom RSpec here, if the automatically generated

RSpec is not ok.

• fixed_rspec_url: You can specify the URL to a custom RSpec here, instead of

entering the Rspec directly as with the fixed_rspec option.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 31 of 56

Figure 6: jFed automated tester: run a specific test

Next, click on the “Run Tests” button. You will see a progress bar while the test runs. A

“TestNodeLogin” can take a few minutes, to more than 20 minutes, depending on how fast the

AM is, and wether the nodes come online or not.

A test report will appear in the bottom half of the window when the test is finished. You can

look into the details of each step. Note that you can click the “Hide/Show” buttons to show

additional call details.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 32 of 56

Figure 7: jFed automated tester: test results

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 33 of 56

Figure 8: jFed automated tester: test result details

At the bottom of the window, there are some buttons of interest:

• The “Call Log History” button allows you to see the call details in the same way as the

jFed probe shows them. This is sometimes easier than the HTML view above.

• You can use “Save test result in HTML format” to store the result to disk, which can be

handy to send them to others.

Todo

this section needs to be improved

3.3.3 Permanent monitoring: Fedmon

The jFed team can add your AM to the “federation monitor”. Ask us about this.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 34 of 56

As an example, here is the monitoring overview for all monitored imec/iMinds

testbeds: https://flsmonitor.fed4fire.eu/fls.html?testbedcategory=iMinds&showlogintests

3.4 RSPEC DETAILS FOR AM DEVELOPERS

3.4.1 General

There are 3 types of RSpecs, request, manifest and advertisement RSpecs.

All RSpecs must be valid XML, and for each type a slightly different schema is used. Not that

“valid XML” is defined as:

• It is well formed XML (closing and ending tags match, etc.). This means the XML can

be parsed without error by an XML parser.

• The XML follows the specified schema. This means that all rules specified in the

schema are followed, and the rules conserning namespace are followed.

The XSD files that define the RSpec schema for “geni version 3 RSpecs” can be found at the

URI used to identify the namespace: http://www.geni.net/resources/rspec/3 .. note:: There are

3 root xsd files at that location: one for the request RSpec schema, one for the manifest RSpec

schema and one for the advertisement RSpec schema. .. note:: The URI used to define an

XML namespace does NOT need to host any XSD files. This is often done as it is a convenient

location, but the URI can also be only an identifier. Research XML namespaces if this is

confusing.

The Rspec schema’s allow a lot of freedom: they allow adding custom elements at different

places in the RSpec. However, this is only allowed if the additions are in a different namespace

than the “geni v3 rspec” namespace. This means you need to define a custom namespace for

any RSpec extension you make!

Note that there are certain rules on how an AM should handle unknown RSpec extensions in

RSpec requests. See the section on requests RSpecs below.

3.4.2 Choosing your component manager urn

In the RSpecs, resources belong to a certain “component manager”. This is the authority

responsible for these resources, and thus it is typically your AM itself. This binding is

represented in each RSpec, using the component_manager_id attribute, which has an

URN as value.

https://flsmonitor.fed4fire.eu/fls.html?testbedcategory=iMinds&showlogintests
http://www.geni.net/resources/rspec/3

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 35 of 56

More info on the exact format of the URNs used can be found

at http://groups.geni.net/geni/wiki/GeniApiIdentifiers. Put simply, the URN using for

the component_manager_id attribute is either of the

form urn:publicid:IDN+TOPLEVELAUTHORITY:SUBAUTHORITY+authority+c

m or of the

form urn:publicid:IDN+TOPLEVELAUTHORITY:SUBAUTHORITY+authority+a

m. (both ending, cm and am are in use at different testbeds. We recommend am, but it doesn’t

really matter.)

It is best NOT to use :SUBAUTHORITY at all, unless you really know you need it. So the

typical urn is: urn:publicid:IDN+TOPLEVELAUTHORITY+authority+cm

The TOPLEVELAUTHORITY part of the URN is preferably the top level DNS name of your

AM. In some cases, a nickname is also ok.

Both localhost or 127.0.0.1 are not allowed. IP addresses should be avoided.

This URN is used in the following places:

* In the ``component_manager_id`` attribute of node elements in

the advertisement RSpec.

* In the ``component_manager_id`` attribute of node and link

elements in the request and manifest RSpec.

* Optionally: in the ``GetVersion`` reply, in the ``value``

``urn`` field.

A few examples of real component manager URNs:

* urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm

* urn:publicid:IDN+utah.cloudlab.us+authority+cm

* urn:publicid:IDN+fuseco.fokus.fraunhofer.de+authority+cm

* urn:publicid:IDN+instageni.cs.princeton.edu+authority+cm

* urn:publicid:IDN+exogeni.net+authority+am

http://groups.geni.net/geni/wiki/GeniApiIdentifiers

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 36 of 56

* urn:publicid:IDN+exogeni.net:bbnvmsite+authority+am

3.4.3 RSpec basics: sliver_type and exclusive

The basic rspec format allows expressing raw bare metal hardware nodes as well as

VMs/container nodes. The sliver_type element is used, as well as

the exclusive attribute. Support for both is mandatory in each of the RSpec types.

The sliver_type element is used to specify which sort of node is requested or available.

The 2 common cases are bare metal, and virtual machines. You are free to pick a sliver_type

name that makes sense for your testbed.

For bare metal nodes, emulab uses raw-pc as sliver_type name.

Some examples of sliver_type names for virtual machines:

• default-vm is defined within geni as a “convenience” sliver type. Each AM that

supports VMs is supposed to replace this by the default VM sliver_type for that AM.

This is makes it easier to write portable RSpecs that can be executed on multiple

testbeds, without changing the sliver_type for each testbed. It is useful to support

this feature if you AM supports VMs, but it is not mandatory.

• emulab-xen and emulab-openvz are the VM sliver_type used by emulab (and

thus instageni).

• xo.tiny, xo.small, xo.medium, xo.large, xo.xlarge are the types used by

exogeni. Note that they map to the “size” of the VM.

• docker-container is used by the ilab.t docker AM.

The exclusive attribute is always true for bare metal hardware, since you always get

exclusive access to it. Example:

<node client_id="node0" exclusive="true"

component_manager_id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm">

 <sliver_type name="raw-pc"/>

</node>

For VMs, the user can specify the node exclusive attribute of the node to be either false or

true. exclusive="false" means that other users can get a VM hosted on the same

physical machine. exlusive="true" means that ohter users can not get a VM hosted at

the same physical machine. For most cases with VMs or

containers, exclusive="false" is always used.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 37 of 56

Example:

<node client_id="node1" exclusive="false"

component_manager_id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm">

 <sliver_type name="default-vm"/>

</node>

A request with exclusive="false" for a node where that is not supported by the testbed,

should not result in a failure. The testbed should just change it to true in the manifest. However,

a request for exlusive="true" for a node for which the testbed does not support it, should

result in an error.

In the advertisment RSpec, the AM needs to list each allowed sliver_type for each node.

The exclusive attribute takes a different meaning in the

advertisement. exclusive="false" means that a request may never request exclusive

access to a node. exlusive="true" means a request may request exclusive access.

3.4.4 RSpec basics: Disk Images

Disk images are added as part of a sliver type, because they can differ depending on sliver

type.

In an advertisment RSpec, the AM should list all possible disk images within each sliver

element of each node. Note that this means there will be a lot of repetition! (That is not a nice

feature of the “geni version 3 rspec” schema, but there is no way around it.)

It is not required that an AM supports this functionality. In case an AM does not support it, it

should fail with the correct error when a disk_image is specified in a request RSpec.

Example in a request:

<node client_id="node0" exclusive="true"

component_manager_id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm">

 <sliver_type name="raw-pc">

 <disk_image name="urn:publicid:IDN+wall2.ilabt.iminds.be+image+emulab-ops:CENTOS65-64-

STD-BIG2"/>

 </sliver_type>

</node>

In practice, the name field of a disk image contains an URN. jFed currently can only handle

disk images containing an URN. The authority part of the URN should refer to the testbed,

the type part of the URN is always “image”.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 38 of 56

Note that the geni version 3 rspec schema allows the following optional attributes to be

specified in the advertisement RSpec (they are allowed in the request RSpec, but don’t make

much sense there):

• os: The name of the OS

• version: The version of the disk image, or OS (not really specified anywhere which

one).

• description: A textual description of the disk image. You can put anything that is

helpfull for users here.

• url: TODO: emulab supports disk images from other testbeds. This is not yet

explained here.

To have jFed support disk images for a testbed, the jFed central config needs to be updated.

Contact the jFed developers for this.

3.4.5 RSpec basics: Specific nodes

Optionally, an AM can allow (or require) requests that demand a specific piece of hardware.

This is done using the component_id attribute. If this attribute is not specified, the testbed

has to either fail the request (informing the user that component_id is mandatory), or pick

a suitable piece of hardware automatically.

Note that the advertisement RSpec can contain an additional component_name attribute,

which has a nickname for a node. This is typically the same as the last part of

the component_id. This component_name attribute should NOT be used in a request

RSpec. An AM should not require it, nor use it to assign specific nodes,

only component_id should be used for that.

Example in a request:

<node client_id="node0" exclusive="true"

 component_manager_id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm"

 component_id="urn:publicid:IDN+wall2.ilabt.iminds.be+node+n082-01">

 <sliver_type name="raw-pc"/>

</node>

3.4.6 RSpec basics: Hardware type

Optionally, an AM can allow (or require) requests that demand a specific type of hardware, but

that do not specify the specific piece of hardware. This is done using

the hardware_type element. If this element is specified and no component_id is

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 39 of 56

specified, the testbed has to either fail the request (informing the user

that hardware_type is not supported), or pick a suitable piece of hardware, matching the

type, automatically.

Note

It is important to unserstand the difference between hardware_type and sliver_type.

Example in a request:

<node client_id="node1" exclusive="true"

component_manager_id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm">

 <sliver_type name="raw-pc"/>

 <hardware_type name="gpunode"/>

</node>

In an advertisement RSpec, the hardware_type should be specified, if this feature is

supported in the request RSpec. Note that it is allowed to specify

multiple hardware_type elements in an advertisement RSpec. It is ok to do so if that makes

sense for your AM. But if possible, it’s nice to keep it simple and specify only

1 hardware_type per node.

3.4.7 Advertisement Examples: Bare metal access

Scenario: You want to give users “bare metal access” to nodes. This means they get full

access, not access to a VM or container. The user is the only one getting access to the

machine, typically as “root” or as a user with sudo privilegdes.

Advertisment RSpec example:

<node component_id="urn:publicid:IDN+example.com+node+pi1"

component_manager_id="urn:publicid:IDN+example.com+authority+am" component_name="pi1"

exclusive="true">

 <sliver_type name="raw-pc">

 <disk_image name="urn:publicid:IDN+example.com+image+raspbian"/>

 <disk_image name="urn:publicid:IDN+example.com+image+arch"/>

 </sliver_type>

 <hardware_type name="pc-raspberry-pi"/>

 <available now="true"/>

 <location country="NU" latitude="0.0" longitude="0.0"/>

</node>

Things to note:

• exclusive is true, because users get full acesss to the node.

• sliver_type is raw-pc. This is the typical sliver type used to represent bare metal

access to “PC like” hardware.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 40 of 56

• hardware_type is pc-raspberry-pi. The hardware type name should be

something that identifies the type of hardware to a user. In this case, the hardware is a

Raspberry Pi computer. Another example are

the pcgen01, pcgen02 and pcgen03 types, which are used on the imec virtual wall,

and means “A PC of generation 1, 2 or 3”, users can then look up in the testbed

documentation what the full specifications of each “generation” is.

• available now="true" means that this hardware is currently available.

• location is used to specify the location of the node. country is the country code, in

this case, and invalid code, refering to “null island”. Off course you should use the real

coordinate of your testbed node here. It is OK to use the same coordinate for all testbed

nodes.

3.4.8 Advertisement Examples: Simple VM’s

This example shows how you can offer a single type of VM.

Advertisment RSpec example:

<node xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"

component_id="urn:publicid:IDN+example.com+node+vmhost1"

component_manager_id="urn:publicid:IDN+example.com+authority+am" component_name="vmhost1"

exclusive="false" >

 <sliver_type name="xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <hardware_type name="pc-vmhost">

 <emulab:node_type type_slots="20"/>

 </hardware_type>

 <available now="true"/>

 <location country="NU" latitude="0.0" longitude="0.0"/>

</node>

Matching Request RSpec example:

<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"

xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1">

 <node client_id="vm-one" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="false">

 <sliver_type name="xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="100.0" y="100.0"/>

 </node>

 <node client_id="vm-two" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="false">

 <sliver_type name="xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <jfed:location x="100.0" y="100.0"/>

 </node>

</rspec>

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 41 of 56

3.4.9 Advertisement Examples: Complex VM’s: multiple sizes

This example shows how you can offer different “sizes” of VM, where each size has a different

number of CPU cores, memory, etc.

Each size will typically take a different number of type_slots, for example, a “tiny-vm” will

take 1 type slot, and a “large-vm” will take 5 type slots.

Advertisment RSpec example:

<node xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"

component_id="urn:publicid:IDN+example.com+node+vmhost1"

component_manager_id="urn:publicid:IDN+example.com+authority+am" component_name="vmhost1"

exclusive="false" >

 <sliver_type name="vm-tiny">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <sliver_type name="vm-medium">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <sliver_type name="vm-big">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <hardware_type name="pc-vmhost">

 <emulab:node_type type_slots="30"/>

 </hardware_type>

 <available now="true"/>

 <location country="NU" latitude="0.0" longitude="0.0"/>

</node>

Matching Request RSpec example:

<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"

xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1">

 <node client_id="vm-one" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="false">

 <sliver_type name="vm-tiny">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="100.0" y="100.0"/>

 </node>

 <node client_id="vm-two" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="false">

 <sliver_type name="vm-tiny">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <jfed:location x="100.0" y="100.0"/>

 </node>

</rspec>

3.4.10 Advertisement Examples: Specialised hardware connected to single VM box

<node component_id="urn:publicid:IDN+example.com+node+usrp2"

component_manager_id="urn:publicid:IDN+example.com+authority+am" component_name="usrp2"

exclusive="true">

 <sliver_type name="usrp-vm">

 <disk_image name="urn:publicid:IDN+example.com+image+plain"/>

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 42 of 56

 <disk_image name="urn:publicid:IDN+example.com+image+gnuradio"/>

 </sliver_type>

 <hardware_type name="pc-usrp"/>

 <available now="true"/>

 <location country="NU" latitude="0.0" longitude="0.0"/>

</node>

3.4.11 Advertisement Examples: Combining Bare metal and VMs on a single node

Hint: look at emulab advertisement RSpecs.

Note that not all possible scenarios can be expressed in this format. Also, for some scenarios

that can be expressed, not all info is specified. RSpec has grown historically, and does not

offer every flexibility.

This is a complex case. It’s good to note that each sliver_type works with one or

more hardware_types, and will not work with certain other hardware_types. This info

is not specified anywhere.

In the example below, the hardware_type “pc-gen1” and “pc-gen2” have

a sliver_type “raw-pc”, and the hardware_type “pc-vmhost”

has sliver_type “small-xen-vm” and “big-xen-vm” (these match resources allocated to the

VM, such as cores and memory. As an example, “small-xen-vm” takes 2 type slots, and “big-

xen-vm” takes 5 type slots).

Example advertisement:

<node xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"

component_id="urn:publicid:IDN+example.com+node+nodeA"

component_manager_id="urn:publicid:IDN+example.com+authority+am" component_name="nodeA"

exclusive="true" >

 <sliver_type name="small-xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <sliver_type name="big-xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu14"/>

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

 <sliver_type name="raw-pc">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 <disk_image name="urn:publicid:IDN+example.com+image+arch"/>

 </sliver_type>

 <hardware_type name="pc-vmhost">

 <emulab:node_type type_slots="20"/>

 </hardware_type>

 <hardware_type name="pc-gen2">

 <emulab:node_type type_slots="1"/>

 </hardware_type>

 <available now="true"/>

 <location country="NU" latitude="0.0" longitude="0.0"/>

</node>

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 43 of 56

Example request for any bare metal node of type “pc-gen2” (there could be bare metal nodes

of type “pc-gen1” offering sliver_type “raw-pc” as well):

<node client_id="gen2nodeA" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="true">

 <sliver_type name="raw-pc">

 <disk_image name="urn:publicid:IDN+example.com+image+arch"/>

 </sliver_type>

 <hardware_type name="pc-gen2"/>

</node>

Example request for bare metal access to “nodeA”:

<node client_id="nodeA" component_id="urn:publicid:IDN+example.com+node+nodeA"

component_manager_id="urn:publicid:IDN+example.com+authority+am" exclusive="true">

 <sliver_type name="raw-pc">

 <disk_image name="urn:publicid:IDN+example.com+image+arch"/>

 </sliver_type>

</node>

Example request for a “big” VM on any VM node:

<node client_id="vm1" component_manager_id="urn:publicid:IDN+example.com+authority+am"

exclusive="false">

 <sliver_type name="big-xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

</node>

Example request for 2 VM nodes on “nodeA”, with exclusive hardware access:

<node client_id="small-vm-a" component_id="urn:publicid:IDN+example.com+node+nodeA"

component_manager_id="urn:publicid:IDN+example.com+authority+am" exclusive="true">

 <sliver_type name="small-xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

</node>

<node client_id="big-vm-b" component_id="urn:publicid:IDN+example.com+node+nodeA"

component_manager_id="urn:publicid:IDN+example.com+authority+am" exclusive="true">

 <sliver_type name="big-xen-vm">

 <disk_image name="urn:publicid:IDN+example.con+image+ubuntu16"/>

 </sliver_type>

</node>

3.4.12 Request RSpec

This section describes which request RSpec features you can use for your AM. jFed will

automatically offer a lot of functionality when this is done correctly.

Some things to take into account in request RSpecs:

• Each node will have exactly one sliver_type in a request.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 44 of 56

• Each sliver_type will have zero or one disk_image elements. If your testbed

requires disk_image or does not support it, it should handle bad requests RSpecs

with the correct error.

• The exclusive element is specified for each node in the request. Your testbed should

check if the specified value (in combination with the sliver_type) is supported. and

return the correct error if not.

• The request RSpec might contain links that have a component_manager element

that maches your AM. If you AM does not support links, it should return the correct

error.

Some information will be in a request RSpec, that needs to be ignored and copied to the

manifest RSpec unaltered. This is important to do correctly.

• A request RSpec can contain nodes that have a component_manager_id set to a

different AM. You need to ignore these nodes, and copy them to the manifest RSpec

unaltered.

• A request RSpec can contain links that do not have a component_manager matching

your AM (links have multiple component_manager_id elemnts!). You need to ignore

these links, and copy them to the manifest RSpec unaltered.

• A request RSpec can contain XML extensions in nodes, links, services, or directly in

the rspec element. Some of these your AM will not know. It has to ignore these, and

preferably also pass them unaltered to the manifest RSpec.

3.5 STITCHING DETAILS FOR AM DEVELOPERS

3.5.1 General

“Stitching” and “Dedicated Ext. Network Connection” are both methods to connect testbeds

using dedicated physical links. Thus a fixed delay and bandwitdh is available between nodes.

An alternative to both is to connect nodes over the internet, but this only offers “best-effort”

delay and bandwidth (this typically uses “virtual links”, created gre-tunnels or other methods).

3.5.2 “Real” Stitching: automated multiple hops and VLAN translation

Stiching is used to create links between different AMs and testbeds. The user just draws a link

between 2 nodes of a different testbed in the jfed experimenter GUI. Behind the scenes, VLAN

connections are setup over dedicated link(s) between the different testbeds. Possibly, the

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 45 of 56

testbeds are not directly connected, and a few hops are needed to make the connection. On

each of these hops, VLAN translation may be required to change to the VLAN used in the next

link. Each involved AM must keep track of the used VLANs on each external link.

The user does not need to know any of these details, but the client software needs to send

VLAN info to each VLAN, and work as an intermediate to find a working configuration.

To start this setup procedure, the client first needs to contact the SCS: the “Stitching

Computation Service”. This service has info on the interconnections between all AMs, so it can

find a path from AM to AM, passing though the needed AMs on the way. The client needs

receives info from the SCS about which AMs to contact in which order.

The SCS will then request the advertisement RSpec of the AMs periodically. To allow stitching,

the advertisement RSpec must contain info about external links.

At imec/iMinds we run an SCS at http://scs.atlantis.ugent.be:8081/geni/xmlrpc There is also a

geni SCS. The SCS’s must be configured with info about the AMs that offer external links.

Stitching is a very complicated topic. Here are a few points that might be good to know:

• The SCS is needed, because in some cases, a stitched link that goes from one AM to

another, will actually cross one or more other AMs. Only the central SCS can know

about this topology, as it talks to all involved AMs. It is this topology information that

the SCS will send to clients.

• You can run your own SCS, and jFed can be configured to use this specific SCS for

specific testbeds. However, it’s probably easier and better in the long run if we just add

the info to our SCS.

• The advertisement RSpec contain extra information in related to stitching. This

information is in a seperate namespace. See the example below.

• The SCS gets a request RSpec as input, and appends stitching information to it. This

request RSpec is then sent to each involved AM.

• The manifest RSpec contains cross-AM info about the current stitching setup.

• There is a special error code and message that AMs should return for failures related

VLANs not available for stitching.

• There are 2 important features that improve stitching setup time:

o Support for “any” VLAN in the request RSpec: instead of specifying a VLAN,

the client is allowed to set the special keywork “any” instead, and let the AM

choose

http://scs.atlantis.ugent.be:8081/geni/xmlrpc

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 46 of 56

o Up to date advertisement RSpecs: The advertisement RSpec always contains

up to date info on which VLANs are currently available.

• The client code in the jFed experiment GUI that manages stiching is very complex, to

handle all cases. The client must “negotiate” between the different AMs until a stitching

configuration (= which VLANs on which AM) is found that works on all AMs.

Below is an extract from the wall2 stitching info in the advertisment request:

<stitching lastUpdateTime="2017-02-15T06:19:30Z"

xmlns="http://hpn.east.isi.edu/rspec/ext/stitch/0.1/">

 <aggregate

 id="urn:publicid:IDN+wall2.ilabt.iminds.be+authority+cm"

url="https://www.wall2.ilabt.iminds.be:12369/protogeni/xmlrpc/am">

 <aggregatetype>protogeni</aggregatetype>

 <stitchingmode>chainANDTree</stitchingmode>

 <scheduledservices>false</scheduledservices>

 <negotiatedservices>false</negotiatedservices>

 <lifetime id="life">

 <start type="time">2017-02-15T06:19:30Z</start>

 <end type="time">2017-02-15T06:19:30Z</end>

 </lifetime>

 <node id="urn:publicid:IDN+wall2.ilabt.iminds.be+node+c300b">

 <port id="urn:publicid:IDN+wall2.ilabt.iminds.be+stitchport+c300b:4.2">

 <capacity>1000000</capacity>

 <maximumReservableCapacity>1000000</maximumReservableCapacity>

 <minimumReservableCapacity>1000</minimumReservableCapacity>

 <granularity>1</granularity>

 <link id="urn:publicid:IDN+wall2.ilabt.iminds.be+interface+c300b:4.2">

<remoteLinkId>urn:publicid:IDN+wall1.ilabt.iminds.be+interface+c300a:4.1</remoteLinkId>

 <trafficEngineeringMetric>10</trafficEngineeringMetric>

 <capacity>1000000</capacity>

 <maximumReservableCapacity>1000000</maximumReservableCapacity>

 <minimumReservableCapacity>1000</minimumReservableCapacity>

 <granularity>1</granularity>

 <switchingCapabilityDescriptor>

 <switchingcapType>l2sc</switchingcapType>

 <encodingType>ethernet</encodingType>

 <switchingCapabilitySpecificInfo>

 <switchingCapabilitySpecificInfo_L2sc>

 <interfaceMTU>1500</interfaceMTU>

 <vlanRangeAvailability>197,300-349,750-

1000</vlanRangeAvailability>

 <vlanTranslation>false</vlanTranslation>

 </switchingCapabilitySpecificInfo_L2sc>

 </switchingCapabilitySpecificInfo>

 </switchingCapabilityDescriptor>

 </link>

 </port>

3.5.3 Stitching alternative: Dedicated Ext. Network Connection

If you only need single hop stitching, you can make things easy, by using links to fake nodes,

which represent certain VLANs. The disadvantage is that this is less transparant for end users.

It is however, much easier to implement on the AM.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 47 of 56

In the jFed GUI, this is implemented with the “Dedicated Ext. Network Connection” icon. You

drag in this icon, and then make a link between a real node and this “virtual” node.

3.5.4 Stitching alternative: “tunnels” over internet using link_type

In this scenario, there are no dedicated links between testbeds. Instead, virtual links will be set

up in software, that will run over the internet. Of course, this implies best-effort bandwidth and

delay, instead of garuanteed bandwidth and delay.

These links can typically be used within a testbed as between testbeds. (Using them within

testbeds is useful if the testbed doesn’t support dedicated links between nodes.)

In this scenario, you draw a link in jFed and change it’s type to match the type of virtual link.

This link type is set using the <link_type> element in the RSpecs <link>.

Currently, the know link types are:

• Regular link: no link type, or <link_type name="lan"/> (between nodes of the

same testbed)

• Stiched link: no link type, or <link_type name="lan"/> (between nodes of the

different testbeds)

• GRE: <link_type name="gre-tunnel"/>

• EGRE: <link_type name="egre-tunnel"/>

• Proposed: VXLAN: <link_type name="vxlan"/>

Example RSpec:

<?xml version='1.0'?>

<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.geni.net/resources/rspec/3

http://www.geni.net/resources/rspec/3/request.xsd ">

 <node client_id="node0" exclusive="true" component_manager_id="urn:publicid:IDN+testbed-

a.example.com+authority+am">

 <sliver_type name="raw-pc"/>

 <interface client_id="node0:if0">

 <ip address="192.168.0.1" netmask="255.255.255.0" type="ipv4"/>

 </interface>

 </node>

 <node client_id="node1" exclusive="true" component_manager_id="urn:publicid:IDN+testbed-

b.example.com+authority+am">

 <sliver_type name="raw-pc"/>

 <interface client_id="node1:if0">

 <ip address="192.168.0.2" netmask="255.255.255.0" type="ipv4"/>

 </interface>

 </node>

 <link client_id="link0">

 <component_manager name="urn:publicid:IDN+testbed-a.example.com+authority+am"/>

 <component_manager name="urn:publicid:IDN+testbed-b.example.com+authority+am"/>

 <interface_ref client_id="node0:if0"/>

 <interface_ref client_id="node1:if0"/>

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 48 of 56

 <link_type name="gre-tunnel"/>

 <property source_id="node0:if0" dest_id="node1:if0" capacity="10000"/>

 <property source_id="node1:if0" dest_id="node0:if0" capacity="10000"/>

 </link>

</rspec>

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 49 of 56

4 DOCKER-AM AS EXAMPLE AM

This section describes the features and install instructions for the Docker AM (supporting IPv6
resources as well !), that we advise as example/template of an Aggregate Manager. Code for
this can be found at https://github.com/open-multinet/docker-am .

4.1 SUPPORTED AGGREGATE MANAGER FEATURES

• Every basic feature (Allocate, Provision, Delete, Status, ListResources, Describe, Renew)

• Some PerformOperationalAction call are supported

o geni_update_users : Update SSH authorized keys or add a user

o geni_reload : If you want to "reset" your container

o Other options have no effect

• You can provide a sliver-type to get different kind of containers (for example limited

memory or CPU container). Check the advertisement RSpec, and have a look at

gcf_to_docker.py for details.

• Install a custom docker image by providing a name from a DockerHub or a URL to a

Dockerfile or a ZipFile containing a Dockerfile and dependencies.

• Restart the AM without losing the state of existing slivers: Running docker containers

will keep running when the AM stops, and can be controlled again when the AM

restarts. (You can safely remove am-state-v1.dat to clear the state and thus force

config reload. You will need to kill any running docker containers manually in that

case.)

• Multiple physical host for Docker. That means you can increase the scalability easily

by setting up a new "DockerMaster" on remote host. To scale the setup, integration

with kubernetes is probably preferable.

• install and execute can be used to install a zipfile in a specific directory and execute

commands automatically when the container is ready.

• IPv6 per container can be configured in addition to the IPv4 port forwarding of the

host.

• The is demo code that can be used as a basis to customize the AM. Two features are

demonstrated in this code: ** Supporting custom non-container external resources.

(See resourceexample.py) ** Automatically adding a gateway proxy per slice. (See

"proxy" in the configuration parsing)

4.2 HOW TO INSTALL THE AM ?

4.2.1 Dependencies

apt-get install -y python2.7 python-lxml git python-m2crypto python-dateutil python-
openssl libxmlsec1 xmlsec1 libxmlsec1-openssl libxmlsec1-dev python-pip

Pyro4 is also required (for remote dockermasters):

https://github.com/open-multinet/docker-am

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 50 of 56

pip install pyro4

4.2.2 Download source code

• First clone the git repository

git clone https://github.com/open-multinet/docker-am.git

• Initialize submodule (geni-tools source code)

cd docker-am

cd geni-tools

git submodule init

git submodule update

git checkout develop

4.2.3 Configure AM

Two files are used to configure the AM.

4.2.3.1 gcf_config

This file is for the generic GCF configuration. This contains the basic AM setup. The

docker AM specific functionality is activated by

setting delegate to testbed.DockerAggregateManager

Path of this file : docker-am/gcf_docker_plugin/gcf_config

• base_name : Typically the name of your machine. This is the name used in the URN

(urn:publicid:IDN+docker.example.com+authority+am)

• rootcadir : A directory where your trusted root certificates are stored. These are the

certificates of the MA/SA servers who's users the AM will trust. (wall2.pem for

example)

• host : This should be the DNS name of the server. It is used for binding the server

socket. 0.0.0.0 is often a good choice if the hostname is not correctly configured on

the server.

• port : You are free to choose a port. 443 is recommended (because it is infrequently

blocked by client side firewalls).

• delegate : To activate the docker AM code, this must

be testbed.DockerAggregateManager

• keyfile and certfile = Private key and certificate of the AM server. This is used for SSL

authentication. See the section below.

4.2.3.2 docker_am_config

This is the configuration that is specific for the docker AM.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 51 of 56

Path of this file : docker-am/gcf_docker_plugin/docker_am_config

The [general] section currently contains one parameter.

• public_url: the URL to the AM, as advertised in the Getversion reply. This URL must

contain the FQDN of the host. A raw IP address is discouraged. The following values

for the hostname are forbidden here: 0.0.0.0 127.0.0.1 localhost

A [proxy] section is also allowed, but not mandatory (no automatic proxy is used if not

specified). Check the example config for details.

Each other "section" in the config (a section start with [name_of_the_section]) in this

file represents a DockerMaster (a dockermaster host one or more containers). If you

want to configure multiple DockerMaster just duplicate the first section and change

the name. Then, configure parameters :

• max_containers : The maximum number of container hosted by your DockerMaster

• ipv6_prefix : If you have an IPv6 address on your host, set the prefix in /64 or /80 (for

example : 2607:f0d0:1002:51::) and each container will be assigned an IPv6 in this

range

• dockermaster_pyro4_host, dockermaster_pyro4_password and

dockermaster_pyro4_port : Parameters to connect to the dockermanager using pyro4

RPC (only when using a remote dockermanager, to use a local docker service, skip

these options)

• node_ipv4_hostname : The IPv4 of your DockerMaster host (will be used to expose an

SSH port on the containers)

• starting_ipv4_port : This is the first range used by docker for port forwarding. For

example if you set 12000, the first container should be reachable on port 12000, the

second on port 12001, ... The AM uses the first port available from 12000 to

12000+max_containers

4.2.4 Configure a DockerMaster

You can run the docker service on either the same node as the AM, or use the remote

DockerMaster feature (which uses pyro4 for RPC) to run the service on another node.

On the node where docker needs to run, do the following:

First, install the docker engine: https://docs.docker.com/engine/installation/

Then, make sure the daemon is running (with systemd) : systemctl start docker.service

If you want the docker daemon restart automatically after reboot : systemctl enable
docker.service

See the section "Configuring a remote DockerManager (Optional)" for more details on

a remote DockerManager

https://docs.docker.com/engine/installation/

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 52 of 56

4.2.4.1 Configure IPv6 for Docker

If you want to use IPV6 on your container, you have to configure Docker bridge to use

a specified prefix.

Create a new file (this path is available on Debian based

distribution) /etc/systemd/system/docker/service.d/docker.conf :
[Service]

ExecStart=

ExecStart=/usr/bin/docker daemon --ipv6 --fixed-cidr-v6="2607:f0d0:1002:51::/64" -
H fd://

By replacing the IPv6 example by your own with the proper prefix length (64 or 80)

Then restart your docker daemon : systemctl restart docker.service

4.2.5 Generate certificate and key

You need to get a server key and certificate for the AM. You can either get a real one

(using your regular way to get SSL Certificate, or using "Let’s Encrypt"), or you can

create a self signed AM server certificate. In the later case, you will need to add the self

signed certificate to the trust store of all clients (which is not a big deal, as you need to

add other server info anyway).

It is advised not to use the bootstrap-geni-am/geni-tools/src/gen-certs.py script

provided by gcf, it does not generate a good AM server certificate. A valid server

certificate should have:

• A Subject Name containing a CN equal to the server hostname

• One or more Subject Alternative Names of type DNS matching the server hostname(s)

• The server hostname mentioned in the 2 points above, should be a DNS name, never

a raw IP address

• There is no real need for the certificate to contain a Subject Alternative Name of type

URI that contains the URN of the AM. But it is off course no problem if it is included.

Also note that your AM server certificate has nothing to do with the root certificate of

your cleaninghouse (= MA/SA). The clearinghouse root certificate is used for trusting

credentials and for SSL client authentication, it has nothing to do with

SSL server authentication!

To generate a self signed server certificate, you can use the provided script:

cd generate-AM-server-cert/

./generate-certs.sh

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 53 of 56

Make sure the location of the server key and certificate matches the keyfile and certfile

options specified in bootstrap-geni-am/gcf_docker_plugin/gcf_config

You can find some more details on how a certificate can be generated

at https://stackoverflow.com/a/27931596/404495

4.3 STARTING THE AM

sh docker-am/run_am.sh

Or with the systemd service : cp am_docker.service /etc/systemd/system/

Edit the WorkingDirectory according to your installation, reload the systemd daemon

: systemctl daemon-reload, then start the AM : systemctl start am_docker.service

Check the status : systemctl status am_docker.service

4.4 TRUST YOUR C-BAS INSTALLATION

If you use C-BAS as Member Authority (MA) and Slice Authority (SA), you have to trust

credentials from this. To do, just copy certificates used by C-BAS in your "rootcadir"

(configured in gcf_config), usually there stored C-BAS/deploy/trusted/certs.

Restart your AM, if you check the output of the server you should have this at the

beginning :

INFO:cred-verifier:Adding trusted cert file sa-cert.pem

INFO:cred-verifier:Adding trusted cert file ma-cert.pem

INFO:cred-verifier:Adding trusted cert file ch-cert.pem

INFO:cred-verifier:Adding trusted cert file ca-cert.pem

INFO:cred-verifier:Combined dir of 4 trusted certs /root/C-
BAS/deploy/trusted/certs/ into file /root/C-
BAS/deploy/trusted/certs/CATedCACerts.pem for Python SSL support

Of course this AM is not C-BAS dependent and you can trust the certificate of any

MA/SA. For example you can trust the MA/SA from iMinds, so you will be able to create

a slice on wall2 and use it on your AM.

4.5 CONFIGURING A REMOTE DOCKERMANAGER (OPTIONAL)

You can set up several DockerManager hosted on different physical machine in order

to increase scalability (for example).

4.5.1 Configure the remote

First of all you need to install dependancies on the remote host :

https://stackoverflow.com/a/27931596/404495

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 54 of 56

apt-get install python2.7 python-pip git

pip install pyro4

And install docker-engine : https://docs.docker.com/engine/installation/

Now download the source code repository :

git clone https://github.com/open-multinet/docker-am.git

And try : python2 docker-am/gcf_docker_plugin/daemon_dockermanager.py --host
127.0.0.1

You should get a warning about not using any password and a URI the server listening

on.

You can use it in this way but it's more convenient to configure a systemd service. To

do this, just copy the service file :

cp bootstrap-geni-am/dockermanager.service.sample
/etc/systemd/system/dockermanager.service

Then edit the WorkingDirectory and ExecStart line in this file to match to your

configuration. The "--host" parameter should be an IP reachable from the AM, so a

public IP or, if your AM is on the same network a private IP.

Finally, do systemctl daemon-reload && systemctl start dockermanager.service and

check with systemctl status dockermanager.service

4.5.2 Configure the AM

On the AM, edit docker-am/gcf_docker_plugin/docker_am_config and add or edit a

section to match the three parameters (dockermaster_pyro4_host,

dockermaster_pyro4_password, dockermaster_pyro4_port) with the parameters set on

the remote

Then delete am-state-v1.dat (to force configuration reload) and restart your AM.

4.6 HOW TO ADAPT THIS AM TO YOUR INFRASTRUCTURE ?

If you want to test the AM with your hardware (not with Docker or in addition to

Docker) you have to develop your own Python Class which manages your hardware.

You can follow the docker model as example. It is based on three classes :

DockerMaster (dockermaster.py), DockerContainer (dockercontainer.py), and

DockerManager (gcf_to_docker.py).

• DockerMaster is more or less just a pool of DockerContainers, because a

DockerMaster should be a unique physical machine

https://docs.docker.com/engine/installation/

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 55 of 56

• DockerContainer represents a single docker container, with some information like to

ssh port, the IPv6, ...

• DockerManager is a generic class to manage docker from Python

So, if you want to represent a physical machine which can be reserved by a user the

Python class should be a merge between DockerMaster and DockerContainer, you should

inherit your class from ExtendedResource. This class is formed of all used methods by

the AM, so you have to implement at least those methods (also have a look to geni-

tools/src/gcf/geni/am/resource.py)

To kickstart coding this, the class "ResourceExample" is provided. It's dummy external

resource manager, which can act as a starting template. You must write configuration

processing code in testbed.py > _init_ to enable the resource. The dummy resource

does nothing, to get started, edit the file resourceexample.py and find lines

with ssh="exit 0;" and follow the instruction on the lines above. Note that the kickstart

code assumes that your AM has SSH access to the external resource.

Once your resources are ready, you have to init them in testbed.py in

the _init_ method by adding them to the aggregate configuration parsing. Be sure to

delete am-state-v1.dat when testing, to force configuration reload.

Note : You should probably implement a generic wrapper for your infrastructure

like DockerManager, it's easier to maintain, especially if you have different kinds of

resources.

4.7 DEVELOPMENT NOTES

If you want make some contribution to this software, here there is a quick explanation

of each file :

• testbed.py : The aggregate manager main class, handle calls from the API

• dockermaster.py : Docker Master is a pool of docker container, it is called to get some

DockerContainer instances

• dockercontainer.py : Represents a Container with methods to manage it

• gcf_to_docker.py : The DockerManager class, used as generic wrapper for Docker in

Python, mostly used by DockerContainer

• resourceexample.py : A dummy resource to kickstart you to develop your own

resource

• extendedresource.py : A generic resource class which adds some usefull methods to

the base Resource class (which is in resource.py, in the geni-tools repo)

• daemon_dockermanager.py : The daemon used to create a remote DockerMaster

using Pyro4 framework.

D2.4: Testbed requirements, developments and integrations

© 2017-2021 FED4FIRE+ Consortium Page 56 of 56

4.8 ADDITIONAL INFORMATIONS

• Objects are serialized in docker-am/am-state-v1.dat, so you can restart the AM

without consequence

• Slivers expiration is checked every 5 minutes, and on each API call

• Warning : If you restart the host, docker containers are lost, to keep consistent state

delete am-state-v1.dat before restarting the AM.

o It will mostly work without deleting the file but you could have some

unexpected behaviors

4.9 TROUBLESHOOTING

• If you get the error "Objects specify multiple slices", you probably made a typo

in component_manager_id (during allocate call)

• If your configuration is not taken in account, delete docker-am/am-state-v1.dat and

remove all running containers docker rm -f $(docker ps -a -q)

• If you get an SSL error (like host not authenticated) check if you correctly add your

AM/SA certs in trusted root

