

Grant Agreement No.: 732638
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D3.1: Requirements and
specifications for the first cycle

Work package WP 3

Task Task 3.1-3.5

Due date 30/06/2018

Submission date 12/11/2018

Deliverable lead Imec

Version 4

Authors

Brecht Vermeulen (imec), Wim Van der Meerssche (imec), Thijs Walcarius
(imec), Radomir Klacza (SU), Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA), Aris Dadoukis (CERTH),
Donatos Stavropoulos (CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS), Rowshan Jahan Sathi
(TUB), Alex Willner (TUB), Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

Reviewers Peter Van Daele (imec)

Abstract This deliverable gives an overview of the requirements for the developments
in WP3 of the first 18 months of Fed4FIRE+. WP2 are normal operations
developments (add testbeds, fix bugs, small features, etc). WP3 is focussing
on larger new functionality.

Keywords Requirements first cycle, new functionality

Ref. Ares(2018)5816664 - 14/11/2018

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 2 of 47

Document Revision History

Version Date Description of change List of contributor(s)

V1 1/06/2018 TOC Brecht Vermeulen (imec)

V2 24/10/2018 First complete version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza (SU),
Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA),
Aris Dadoukis (CERTH), Donatos Stavropoulos
(CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS),
Rowshan Jahan Sathi (TUB), Alex Willner (TUB),
Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

V3 8/11/2018 Almost final version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza (SU),
Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA),
Aris Dadoukis (CERTH), Donatos Stavropoulos
(CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS),
Rowshan Jahan Sathi (TUB), Alex Willner (TUB),
Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

V4 12/11/2018 Final version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza
(SU), Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA),
Aris Dadoukis (CERTH), Donatos Stavropoulos
(CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS),
Rowshan Jahan Sathi (TUB), Alex Willner (TUB),
Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
Federation for FIRE Plus (Fed4FIRE+); project’s consortium under EC grant agreement
732638 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2017-2021 Fed4FIRE+ Consortium

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 3 of 47

ACKNOWLEDGMENT

This deliverable has been written in the context of a Horizon 2020 European research project,
which is co-funded by the European Commission and the Swiss State Secretariat for
Education, Research and Innovation. The opinions expressed and arguments employed do
not engage the supporting parties.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FED4FIRE+ project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 4 of 47

EXECUTIVE SUMMARY

This deliverable gives an overview of the requirements for the developments in WP3 during
the first 18 months of the project. WP2 are normal operations developments (add testbeds, fix
bugs, small features, etc). WP3 is focussing on larger new functionality.

WP3 consists out of the following tasks, which are also the sequence of sections in this
deliverable:

• Task 3.1 is focussing on SLA and reputation for testbed usage

• Task 3.2 is focussing on Experiment-as-a-Service (EaaS), data retention and
reproducibility of experiments

• Task 3.3 is targeting Federation monitoring and interconnectivity

• Task 3.4 works on Service orchestration and brokering

• Task 3.5 researches ontologies for the federation of testbeds

We identify the (user) requirements for the developments in WP3. Detailed requirements for
the SLA, Reputation and YourEPM modules are listed. An authentication proxy is identified as
a module easing interaction with REST based services.

Besides those, we also looked from a bit further away, to identify needs of experimenters and
we found out that Fed4FIRE testbeds do support all kinds of experimentation, but some
experiments (e.g. scaling up, NFV/SDN, automation) can benefit from tools doing a lot of the
work for the user.

In this regard, we see Fed4FIRE as a meta-testbed where others (e.g. other projects) can build
tools on top. Key is then to bring these tools to production quality (with documentation, maturity,
etc). D3.2 goes more into detail on some of these tools that have been implemented.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 5 of 47

TABLE OF CONTENTS

DISCLAIMER .. 2
COPYRIGHT NOTICE... 2
ACKNOWLEDGMENT .. 3

1 SLA AND REPUTATION SERVICE ... 8
1.1 SLA AND REPUTATION SERVICE ARCHITECTURE .. 9
1.2 FUNCTIONAL REQUIREMENTS ..10
1.2.1 SLA Functional Requirements ..10
1.2.2 Reputation Functional Requirements ...13
1.2.3 MySlice Functional Requirements ..14
1.2.4 Type of requirements ...17
1.3 SLA ...18
1.3.1 SLA Components & Software/Tools ...18
1.4 REPUTATION ...20
1.4.1 REPUTATION components & Software/Tools ..20
1.5 MYSLICE ...21
1.5.1 MySlice components & Software/Tools ..21
1.6 FRONTEND ...23
1.6.1 SLA Frontend ...23
1.6.2 REPUTATION frontend ..24
1.7 FUTURE WORK ..24
1.8 REFERENCES ..25

2 YOUREPM – EXPERIMENT ORCHESTRATION .. 26
2.1 FUNCTIONAL REQUIREMENTS ..26
2.2 EXPERIMENT SERVICE ORCHESTRATION ...30
2.2.1 Service Orchestration Components ..32

3 AUTHENTICATION PROXY SERVICE .. 36
3.1 REQUIREMENTS ..36
3.2 EXAMPLES OF INJECTED HTTP HEADERS ..37
3.3 ADVANTAGES AND DISADVANTAGES ...37
3.3.1 Advantages ..37
3.3.2 Disadvantage ...37

4 OTHER REQUIREMENTS & VISION ON REQUIREMENTS 38
4.1 SCALING UP EXPERIMENTS ..38
4.2 NFV/SDN EXPERIMENTATION ..43
4.3 AUTOMATE EXPERIMENTS ..45

5 CONCLUSIONS ... 47

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 6 of 47

LIST OF FIGURES

FIGURE 1: SLA & REPUTATION SERVICE ARCHITECTURE .. 9

FIGURE 2: MYSLICE V2 ARCHITECTURE ...22

FIGURE 3: YOUREPM ARCHITECTURE ..32

FIGURE 4: ARCHITECTURE OF AUTHENTICATION PROXY SERVICE36

FIGURE 5: GEC22 SCALING UP DEMO ...38

FIGURE 6: BUILD A (SMALL SCALE) PROTOTYPE ON A SINGLE TESTBED TO VERIFY
THE FUNCTIONAL ASPECTS ..39

FIGURE 7: BUILD THE BACKBONE OF THE EXPERIMENT ON MULTIPLE TESTBEDS 39

FIGURE 8: SCALE UP THE NUMBER OF RESOURCES ...40

FIGURE 9: DO THE ACTUAL EXPERIMENT ..40

FIGURE 10: SCALE UP EXPERIMENTS THROUGH ESPEC AND KUBERNETES41

FIGURE 11: RUMBA FRAMEWORK ARCHITECTURE ..42

FIGURE 12: LARGE TOPOLOGY WITH MULTIPLE EDGE NETWORKS ON THE VIRTUAL
WALL TESTBED ...42

FIGURE 13: LARGE TOPOLOGY ON EXOGENI ..43

FIGURE 14: MANUAL EXPERIMENTATION WITH CLICK OR OPEN VSWITCH43

FIGURE 15: EXPERIMENTERS CREATING THEIR OWN FRONTEND FOR EASY NFV
EXPERIMENTATION ...44

FIGURE 16: EXAMPLE OF FUTEBOL PROJECT USING THE PROVISIONING OF
FED4FIRE WITH AN ADDED TOSCA/COPA LAYER ON TOP ..45

FIGURE 17: WWW.F-INTEROP.EU REMOTE INTEROP AND CONFORMANCE TESTING
 ...46

FIGURE 18: RUNNING F-INTEROP ON TESTBEDS ..46

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 7 of 47

LIST OF TABLES

TABLE 1: SLA TECHNICAL REQUIREMENTS ..20

TABLE 2: REPUTATION SERVICE TECHNICAL REQUIREMENTS21

TABLE 3: MYSLICE V2 TECHNICAL REQUIREMENTS ..23

TABLE 4: YOUREPM FUNCTIONALITIES ...30

TABLE 5: YOUREPM TECHNICAL REQUIREMENTS ...35

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 8 of 47

1 SLA AND REPUTATION SERVICE

In Fed4FIRE+ environment, the Service Level Agreement (SLA) and the Reputation Service
provide the necessary tools and mechanisms for delivering to the users a quantitative view of
the trustworthiness of the federated testbeds. This service facilitates the Fed4FIRE+ users to
select the appropriate testbed in the federation according to their experiment’s requirements.

The aim of adding SLA within Fed4FIRE+ is to enable testbed providers to create offerings
that experimenters can accept establishing an agreement with the testbed owner. We can
understand the agreement as a contract between the platform providers and the testbed users.
Once the agreement has been created it must be verified that it is being fulfilled. The
information related to the execution of an experiment, i.e., if there is an agreement violation,
will be send to the other components using a notification / subscription pattern.

The Reputation Service of Fed4FIRE+ aims to enhance and extend the already-developed
reputation service of Fed4Fire project. The updated service will leverage Quality of Service
(QoS) metrics, such as Availability, Latency etc., Quality of Experience (QoE) metrics, e.g.,
Usability and Documentation Readability, and SLA data in order to compute the degree of
confidence of both experimenters and testbed. At the end of an experiment, the users will be
prompted to give their feedback for the reserved testbeds in order to update the reputation
score of the testbed and the credibility score of the experimenter. This process mitigates the
effect of abnormal or malicious evaluations and guarantees that the testbeds’ reputation score
is fairly computed.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 9 of 47

1.1 SLA AND REPUTATION SERVICE ARCHITECTURE

Figure 1: SLA & Reputation Service Architecture

Figure 1 shows the architecture of the SLA and Reputation service within the Fed4FIRE+
project. In the Federation domain we have the components that will be centralized and only
instantiated once in Fed4FIRE+. In the Testbed domain we have the software components
that will be installed at each platform and therefore instantiated multiple times in the
Fed4FIRE+ project.

The centralized components developed in this task are the SLA dashboard and collector, and
the Reputation Service. As shown in the Figure above, both the SLA collector and the
Reputation Service communicate with MySlice v2 and jFed tool in order to enable the users to
use graphical tools to interact with those components. In the The decentralized components
are the SLA management module and the monitoring data databases and APIs. At each
testbed, both of them are utilized in order to provide SLA functionalities and integrate with the
Reputation Service. The SLA management module and the Reputation Service will access

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 10 of 47

the monitoring data needed from the API for the calculation of SLA violations and reputation
scores.

1.2 FUNCTIONAL REQUIREMENTS

The above architecture and the underlying components should fulfil the functional
requirements listed below:

1.2.1 SLA Functional Requirements

ID SLA_01

Title SLA solution must cover the whole lifecycle specified in WS-Agreement

Short description The solution must cover the SLA lifecycle:

• Generation of WS-Agreement templates and agreements

• Provisioning of the agreements and its monitoring.

• Management of SLA related entities: templates, agreements, providers,
violations and penalties

• Assessment of Service Level Objectives (SLOs) and generation of
corresponding penalties when an SLO is violated

• Notification of detected violations and incurred penalties to the SLA
Collector in order to handle it with the subscription service.

• Stop the agreements and their monitoring

Additional

Information:

A platform owner, but no other, must be able to create an offering. Technically

this is implemented by creating an SLA template and including measurable

terms. The information of the violations must be generated throughout an

experiment lifetime.

Type FUNC

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_02

Title SLA solution REST interface

Short description The SLA solution will provide a REST interface in order to enable third-party
applications to interact with it. The third-party software must be able to
retrieve the details about an offering, template or enforce (start the
execution) of an agreement. The result of the execution of an agreement
must be also available via the REST interface. The message format must
be in XML or JSON.

Additional

Information:

-

Type FUNC / ENV

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_03

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 11 of 47

Title SLA solution Subscription mechanism

Short description SLA must provide a subscription mechanism in order to allow third-party
software to receive the information of the violations that are occurring in a
specific agreement while the agreement is enforced or at the end of the
agreement enforcement. The subscription mechanism must enable filtering
the messages based on the content.

Additional

Information:

-

Type FUNC

Priority Level Medium

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_04

Title SLA solution multitenant

Short description SLA must support the recording of offerings and agreements from different
organizations in such a way that the organizations cannot interfere with
each other.

Additional

Information:

As the architecture is not centralized, every testbed will have different data

bases and data between them will not be shared.

Type FUNC

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_05

Title SLA Dashboard

Short description The SLA Solution must provide a GUI to simplify the task of testbed
providers of creating new offerings and to check the agreements that have
been created based on its offerings. Detailed information associated to the
offerings and agreements like the terms to be fulfilled or the violations that
have occurred must be also identifiable with this GUI.

Moreover, the experimenters will be able follow up the agreements created
outside the dashboard, since the dashboard is not responsible to create new
agreements.

Additional

Information:

-

Type USE

Priority Level Medium

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_06

Title Agreement creation and enactment

Short description The agreement creation will be done with jFed or MySlice tools. It must be
always based to an offering created by a testbed provider. This agreement

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 12 of 47

must always include the terms that must be fulfilled, the expiration time and
the id of the offering it is based on.

The SLA solution must allow creating an agreement between platform
provider (testbed owner) and testbed client (experimenter) based on an
offering

Additional

Information:

The testbed client must be able to check the existing offering in order to find

out if there is an interesting one.

Type FUNC

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_07

Title SLA terms quantizable

Short description SLA offerings and agreement will contain terms that must be guaranteed.
These terms must be quantizable and comparable.

Additional

Information:

This is a functional requirement needed by the SLA. The testbed providers

must indicate terms that must be quantizable and comparable, otherwise

the SLA solution won’t be able to calculate if the terms are being fulfilled or

not.

Type FUNC

Priority Level Medium

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_08

Title SLA access to monitoring data

Short description SLA solution must have access to the monitoring data and it must be able
to retrieve it using terms that specified by the testbed provider in the
guarantee terms. Once an agreement has been created, it must be able to
monitor it and calculate if violation occurs or not

Additional

Information:

In order to calculate if a violation occurs or not, the SLA solution must

access to the monitoring data. The agreement will contain different equation

with terms and comparison that must be fulfilled (guarantee term). The

monitoring data must be retrieved based on the names of the terms. The

values that are retrieved must be comparable with the expression used in

the equation to be fulfilled.

Type DATA

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_09

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 13 of 47

Title Distributed federation architecture.

Short description A decision taken in Fed4Fire is that the SLA solution has to be distributed,
and this is a requirement that will remain in Fed4FIRE+.

Additional

Information:

The SLA solution will allow the integration with other components in order

to manage the agreements exposing interfaces.

Type ENV

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

ID SLA_10

Title SLA solution software dependencies

Short description The different SLA components can have different technologies and they
must expose REST APIs to communicate each other. They have to be
modular and decoupled.

Additional

Information:

Technologies used Python and Java based on the results of Fed4Fire.

Type ENV

Priority Level High

Identified by

Partner(s)

ATOS

Status Design / Early implementation

1.2.2 Reputation Functional Requirements

ID REPUTATION_01

Title Reputation Service REST interface

Short description The reputation service will expose a REST API for the following use cases.

The administrators of the reputation service and the federation should be

able to add/update/remove testbeds and their services to the reputation

service. Also, the experimenters and the frontend tools should be able to

retrieve reputation scores of all testbeds and submit new evaluations

through the REST API.

Additional

information

The message format must be in JSON.

Type FUNC / ENV

Priority Level High

Identified by

Partner(s)

NTUA

Status Design / Early implementation

ID REPUTATION_02

Title REST API documentation

Short description The APIs endpoints, input formatting and response messages and codes

should be thoroughly documented mainly for extensions, usage from other

components and integration with the frontend tools

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 14 of 47

1.2.3 MySlice Functional Requirements

ID MYSLICE_01

Title Users registration

Short description A new user should be able to register from the web frontend, the request

for an account must be sent to a manager of the federation.

Additional

Information:

Type FUNC

Priority Level High

Additional

information

-

Type SUP

Priority Level Medium

Identified by

Partner(s)

NTUA

Status Design

ID REPUTATION_03

Title Reputation computation engine

Short description Τhe new reputation algorithm must be developed, deployed and exposed

to the REST API in order to receive evaluations and compute the updated

reputation scores of the testbeds.

Additional

information

-

Type FUNC

Priority Level High

Identified by

Partner(s)

NTUA

Status Design

ID REPUTATION_04

Title Reputation Service access to monitoring and SLA data

Short description The new reputation computation engine will access through APIs the

monitoring data of an experiment and the information about SLA

agreements and violations in order to calculate the user’s credibility and

readjust the user’s evaluation if needed. More specifically, monitoring data

and SLA data will compare with the experimenter’s evaluation in order to

adjust the credibility and the evaluation.

Additional

information

The monitoring data will be retrieved from the monitoring data REST API of

each testbed while the SLA data will be retrieved through the SLA Collector.

Type DATA

Priority Level High

Identified by

Partner(s)

NTUA

Status Design / Early implementation

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 15 of 47

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_02

Title User account approval

Short description A manager of the federation should be able to approve or reject a request

from a new user for the creation of an account.

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_03

Title Automated retrieval of Credentials

Short description Credentials should be retrieved automatically by the web frontend, hiding

the complexity to the user.

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_04

Title List, browse and select resources

Short description A user-friendly interface should be presented to the user in order to list,

browse and select the relevant resources for his/her experiment

(availability, properties, location…).

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status Ongoing Integration

ID MYSLICE_05

Title Reserve resources

Short description The web frontend should forward the list of resources with the time and

duration of the reservation requested to the relevant AM within the

federation.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 16 of 47

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_06

Title Frontend plugins development guide

Short description A documentation explaining how one can develop a plugin in MySlice

Frontend using ReactJS framework

Additional

Information:

Type ENV

Priority Level High

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_07

Title REST API documentation

Short description A documentation describing the REST API of MySlice

Additional

Information:

Type USE

Priority Level High

Identified by

Partner(s)

UPMC

Status Implemented

ID MYSLICE_08

Title WebSocket API documentation

Short description A documentation describing the WS API of MySlice

Additional

Information:

Type USE

Priority Level High

Identified by

Partner(s)

UPMC

Status On-going

ID MYSLICE_09

Title Support of Federation API v2

Short description Develop in MySliceLib a client API for the Federation v2 API

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 17 of 47

Additional

Information:

Type FUNC

Priority Level Optional

Identified by

Partner(s)

UPMC

Status On-going

ID MYSLICE_10

Title Deployment an instance of C-BAS

Short description Deploy an instance of C-BAS to enable Speaks-for Credentials support

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status On-going

ID MYSLICE_11

Title Deployment of an instance of MySlice v2

Short description Deploy a dedicated instance of MySlice v2 for Fed4FIRE+

Additional

Information:

Type FUNC

Priority Level High

Identified by

Partner(s)

UPMC

Status On-going

1.2.4 Type of requirements

Functional
Functional FUNC

Data DATA

Non-
functional:

Look and Feel Requirements L&F

Usability Requirements USE

Performance Requirements PERF

Operational - Environmental
Requirements

ENV

Maintainability and Support
Requirements

SUP

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 18 of 47

1.3 SLA

Three components will form the SLA solution that will be described in detail in 1.3.1. These
components are SLA Dashboard and SLA Collector that are located in the Federation domain
and the SLA Management module will be placed in the Testbed domain. From the component
distribution we foresee that the SLA components will need inter-domain communication, hence
the security solution that will be chosen in Fed4FIRE+ for this communication has to be also
applied between the SLA Collector and the SLA Management module. The three mentioned
components were already used and distributed in the same manner for Fed4FIRE project, but
some changes must be implemented and features must be included in order to adapt to the
new architecture and cover the new functionalities.

The Testbed provider will be able to create an offering using the SLA Dashboard web-based
frontend. Testbed clients have to create the agreement using jFed or MySlice components.
This agreement has to include information such as the Testbed client that has created the
agreement, the terms that must be fulfilled, the agreement has an expiration time, the
identification of the experiment in which the agreement is based.

The Aggregate Manager is the component that is responsible for managing the experiments
of the testbeds. It will instantiate and, therefore, it will be the one that will communicate the
SLA Management module that the agreement has to be started, i.e. the terms from the
agreement monitored, evaluated and violations detected.

The SLA Management will retrieve the values for the metrics used in the terms in the
agreement from the Testbed Monitoring Data. A REST API will be created by this component
in order to retrieve the monitoring information related to the resources used within a specific
experiment. Moreover, the SLA Management will evaluate the terms defined and check their
fulfillment. If a violation is detected, the information will be, on one hand, stored internally in
the SLA Management database, and on the other hand, will be forwarded to the SLA Collector
which will include a notification /subscription service.

Other components will be able to establish which messages they want to receive specifying a
filter based on the message content. It will not be a classical subscription where a component
receives all messages that are being sent in a queue. Instead, we are going to enable
subscription to messages from a specific queue allowing filtering from messages depending
on the content of the messages. A formatted message will be sent in this queue and a
subscribed component will be able to ask to receive messages only if a specific field is included
in the message, a specific value for the field or the value is above or below a threshold.
Components like the Reputation Service will take advantage of this subscription feature and
will be able to optimize their algorithm.

1.3.1 SLA Components & Software/Tools

As we already have introduced in the previous section, three components will compound the
SLA solution in the Fed4FIRE+ project. These components are the following:

• SLA Dashboard: The SLA Dashboard offers a web-based Graphical User Interface
(GUI) for testbed providers to create offerings from which the agreements will be

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 19 of 47

created. These offerings can be then selected by experimenters, when performing the
resource reservation, to the one that best matches their needs.
The tool also allows testbed providers to visualize the status of the agreements that
have been created using their offering and resources. The dashboard supports
agreements in various stages, including definition, production or completion, also
indicating whether they have been fulfilled in the latter case. Later, in section 1.6.1 we
will include more information about it.

● SLA Collector: This is a common element for the federation whose purpose is to act

as a central communication point for the client tools and the SLA Management module

located in each testbed offering SLAs. Client tools only need to communicate with the

SLA Collector indicating which testbed they want to access and the SLA Collector will

perform the appropriate calls to the corresponding testbed. This component offers a

RESTful API to ease the whole SLA process (from creation to destruction) for client

tools.

The version from Fed4FIRE+ will include the subscription software, the one that will

allow other components to receive the violations that are occurring in agreements from

the executing experiments filtered on the message content. The SLA Manager will

always generate the same format of message and it will be this subscription manager

that will enable the subscription based on message content.

● SLA Management module (SLA Core): Located at testbed level, this module is in

charge of managing offering and agreements (SLAs). It performs the creation, deletion

and evaluation of SLAs during the experiment lifetime between the parties involved:

experimenters (customers) and testbed owners (providers). The component follows the

WS-Agreement (WSAG) specification. This means that the documents representing

templates and agreements are valid according to the schema defined in that

specification, which could be extended to cover specific Fed4FIRE+ requirements. The

core is responsible for managing the actually SLA execution for each federated testbed:

i) Generation of WS-Agreement templates and agreements ii) Management of SLA

related entities: templates, agreements, providers, violations, penalties iii) Assessment

of SLOs and generation of corresponding penalties when an SLO is violated iv)

Notification of detected violations and incurred penalties to the SLA Collector in order

to handle it with the subscription service. Besides, it includes a RESTful API interface

allowing programmatic access to the different types of functionalities offered, and data

can be sent in JSON or XML format.

Both, SLA Dashboard and SLA Collector are based on the same technologies; therefore,
they will have same software requirements:

Components Technologies

SLA Dashboard – SLA
collector

Mysql >= 5.0

Python >= 2.7

SLA Manager Mysql >= 5.0

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 20 of 47

Oracle JDK >=1.7

Table 1: SLA technical requirements

Other requirements needed by the SLA Manager at a higher level is that the terms that are

included in the offerings and agreements must be something measurable and must be included

in the monitoring data. The data values must be numerical and using the same units as they’re

specified in the offering and/or agreement.

1.4 REPUTATION

The Reputation Service of the Fed4Fire project was based on FTUE reputation framework [1].
For a conducted experiment, this framework used some predefined QoS metrics, i.e., Node
Availability, and two QoE metrics, named Overall Experience and Quality, to update the
reputation score per testbed per service. Furthermore, the credibility of the users was
measured and considered on the final computation of the reputation score. The computation
of the experimenter’s credibility was based on the difference between the measured QoS
metrics and the opinion of the user. The QoS and QoE variables had a specific set of numeric
values, i.e., 1-5. Furthermore, no SLA data were used on the computation of the reputation
score.

In the context of Fed4FIRE+ and based on the FTUE framework, we will develop a new
reputation algorithm with better malicious user filtering. The new Reputation Service will use
several QoS metrics, such as Node Availability, Link Availability, and Server Availability, and
QoE metrics, e.g. Usability, Document Readability, testbed owner’s support, in a hierarchical
and scalable structure. These metrics will be expressed by fuzzy variables. Fuzzy logic is
suitable to express the nature of QoE metrics. Thus, a set of linguistic values, such as ‘Poor’,
‘Good’ and ‘Excellent’, will be used for the user input and these terms will be mapped to the
corresponding fuzzy values. Furthermore, Fed4FIRE+ reputation service will leverage SLA
data to accurately update the experimenter’s credibility score. This new service will able to
provide an overall reputation score per testbed or an individual score per service per testbed.

1.4.1 REPUTATION components & Software/Tools

As presented in Figure 1, the Reputation Service is centralized and implemented as an REST
API web-app using the Model-View-Controller (MVC) paradigm. The inner core of the web-app
will consist of the testbed management component, and the reputation computation engine, as
shown on Figure 1. Both components are in fact a separate Ruby on Rails controller. The
database management component consists of the Ruby on Rails models and the Active
Record Object-relational mapping (O/RM) tool.

• Testbed management component: The testbed management component is
addressed to administrators of the Reputation Service. It will be used to add, remove
or update testbeds to the Reputation Service. In parallel, it will be responsible for
adding, updating or deleting the services of a particular testbed. For all these tasks,
this component interacts with the database management component for data storage
and retrieval.

• Reputation computation engine: The reputation computation engine is the core of
the Reputation Service. The computation engine will communicate with the database
management layer in order to retrieve the current reputation score, the credibility of the

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 21 of 47

evaluating user etc. and store their updated values. For the calculation of the updated
credibility and reputation value, the reputation computation engine will handle the
retrieval of monitoring and SLA data from the respective APIs. The computation engine
will receive user evaluations from MySlice and jFed tool and will supply them with the
updated reputation values to be presented to the users through the GUI.

• Database management – Reputation service repository: These two components
consist of the Ruby on Rails models, the Active Record O/RM and a PostgreSQL
Database. The models will be used for data initialization and validation and other
database operations. All data will be stored and retrieved form the PostgreSQL
database.

Components Technologies

Testbed management –
Testbed controller

Rails 5.1.4

Ruby 2.4.2

Database management
Active Record 5.1.4

Postgre PostgreSQL 10.0

Table 2: Reputation service technical requirements

1.5 MYSLICE

1.5.1 MySlice components & Software/Tools

The new architecture is composed of 5 layers with a clear separation of concerns: Web
frontend, APIs (REST/WS), Database, Services with workers and Library (XML-RPC).

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 22 of 47

Figure 2: MySlice v2 Architecture

The frontend has been redesigned using the ReactJS framework. The benefit of using such a
framework is to create generic components that can be re-used in different views depending
on the properties passed to the components. Moreover, the management of a store that
maintains a state of a component or a view is very well suited for an event-oriented application.

We have clearly defined the REST and WebSocket APIs used by the React components and
third-party software. The web components are able to get or post data through the REST API
and can be notified of a change through the WebSocket, providing a very interactive frontend.

Some interactions of the user with the frontend generate events that are stored in a document
oriented database. The MySlice router is then responsible to place these events in the relevant
queue depending on their type. Each type of event is asynchronously processed by a service.
The services call workers that can be multithreaded to scale up the capabilities of the system.
The workers are responsible of the interactions with the distributed testbeds through the AM
API (XML-RPC) and with the SFA Registry, which is the root authority of the federation
providing the credentials to access the testbeds.

As presented in the architecture, MySlice v2 features a database that stores the information
about the objects of the federation as JSON documents. Synchronization processes
periodically refresh the data of this caching system. Depending on the object, the periodicity
ranges from once a day for the list of authorities at the SFA Registry to once every 5 minutes
for the list of leases at the AMs that support scheduled reservations of resources.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 23 of 47

Components Technologies

Myslice, Services, WS,
views

REST API :

Python 3.5

RethinkDB 2.3.5

Tornado 4.4.0

JavaScript ES6

 React 15.2.1

 Alt.js 0.18.4

MysliceLib Python 3.5

SFA Registry Python 2.7

Table 3: MySlice v2 technical requirements

1.6 FRONTEND

The frontend tools (GUIs) of Fed4FIRE were MySlice and jFed. The jFed experimenter GUI
and command line interface (CLI) is a Java based client that allows experimenters to reserve
and instantiate resources, create topologies of the experiment. Furthermore, MySlice is used
by the federation’s web portal for creating slices and discovering and reserving resources.

The activities of Task 3.1 include the integration of the SLA and Reputation Service with the
jFed tool and MySlice. This will be achieved by developing an appropriate plugin for the
federation portal (MySlice) and an extension of jFed GUI and CLI.

1.6.1 SLA Frontend

It already has been introduced in section 1.3.1 that the SLA frontend component is called SLA
Dashboard. It offers web-based GUI for two main functionalities for testbed providers. On one
hand the functionality of creating templates that contain the basic definition of the offering. On
the other hand, they will be able to check the status of the agreements that are being executed
using their resources.

Testbed owners will need a certificate that identifies them within the system that grants the
access to the web site. Once they are in the site, they might create the conditions of their
offerings from the testbed.

Creation of an offering

An offering or SLA template includes information such as the guarantee terms. They are the
conditions the platform owner will fulfil if somebody wants to use the offering. When an SLA
agreement is created based on the SLA template, the guarantee terms remain the same; since

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 24 of 47

the negotiation is one-shot the experiment will accept or reject the conditions included by the
testbed owner (the provider).

The SLA Dashboard must include the option to create a template and its guarantee terms.
Each testbed owner has to use metrics that can be measurable from the federation when
creating the guarantee term and set the threshold that has to be guaranteed. For example, a
provider would be able to specify that the minimal availability will be 95% as guarantee term
for a SLA template. The testbed owner must ensure that he is able to measure the availability
rate and that it will be included in the monitoring data. The threshold must be expressed by the
same unit as the monitoring data. The representation of the guarantee in the SLA template
would be: availability_rate > 0.95.

Status of the agreements

Another key functionality of the dashboard will be the presentation of the status of both active
and past agreements. The testbed owner should retrieve a list of all agreements that have
been created in his testbed and check their execution. For each agreement, the owner should
be able to retrieve the template of each agreement and if the agreement is active to be able to
view which terms produce possible violations.

1.6.2 REPUTATION frontend

The Reputation Service aims at facilitating users to choose the most suitable testbed for their
experiments. Apart from designing and implementing an efficient reputation algorithm for the
testbed federation, the user’s experience with the Reputation Service should be
straightforward, easy. The frontend tools and GUIs (MySlice, jFed) play a key role in achieving
this. Both tools should present in an easy way to compare, reputation score values for each
testbed and their number of ratings in the resource selection dialogues. This will be
implemented as a plugin for MySlice and as an extension to jFed. In order to increase the
effectiveness of the Reputation Service, the users will be prompted to evaluate their conducted
experiments at the end or the cancellation of their reservation. This could be achieved with a
jFed prompt and via an e-mail alert for users not using jFed.

1.7 FUTURE WORK

Through the first cycle, the SLA components will be developed simultaneously with the
development of the monitoring data APIs and the Reputation Service. This will be done in order
to avoid any inconsistencies and incompatibilities between the different components.

The SLA component needs to interact with all the components both collecting and providing
data. Hence, it has been decided to follow a bottom-up implementation, and start from simple
scenarios, which has been introduced in Fed4FIRE project. First, we have to define the metrics
that the monitoring system can provide, and the creation of simple agreements for these
experiments for every testbed. Due to the decentralized architecture, the definition, integration
and implementation of the components will be distinguished to the Testbed domain and the
Federation domain components.

• Testbed domain. i) aligned with the testbed components: monitoring and the
aggregated manager, ii) implementation of new SLA adaptors in order to use the new
monitoring interfaces, iii) improvement of the installation guide and simplification of the
tested deployment, iv) introduction of the aggregated monitoring data since the new
monitoring version is also distributed v) identification and definition of new metrics
together with the rest of components.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 25 of 47

• Federation domain: It has been split in two levels: the collector layer and the GUI
interfaces.

o Collector Layer. i) adaptation of the collector to expose the new functionalities,
ii) integration with the experimenter’s certificate iii) notification of the violations
to the reputation component, iv) creation of the procedure to incorporate new
testbeds

o GUI Interfaces. i) integration with the jFed and Myslice components, ii) creation
of the new SLA plugin in the new Myslice component, iii) improvement of the
previous SLA Dashboard to incorporate the experimenters and the
administrators of the testbeds, iv) authentication based on the experimenter
certificate.

During the first cycle of Fed4FIRE+, the new reputation algorithm will be developed, and a
prototype of the new reputation service will be implemented in NETMODE and integrated with
NITOS testbeds. This requires the following steps.

• Designing and testing the new reputation algorithm.

• Development of the Reputation Service web-app and API.

• Development and deployment of the monitoring data APIs in NETMODE and NITOS
testbeds.

• Installation of the Testbed domain SLA components in NETMODE and NITOS
testbeds.

• The interconnection of the Reputation Service and the SLA and Monitoring Data APIs.

 At the second cycle, the reputation service will be incrementally implemented in other
Fed4FIRE+ testbeds, while at the last cycle the final version of the reputation service will be
integrated with jFed and MySlice tools.

1.8 REFERENCES

[1] Kapoukakis, A., Kafetzoglou, S., Androulidakis, G., Papagianni, C. and Papavassiliou, S.,
2014, December. Reputation-Based Trust in federated testbeds utilizing user experience.
In Computer Aided Modeling and Design of Communication Links and Networks (CAMAD),
2014 IEEE 19th International Workshop on (pp. 56-60).

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 26 of 47

2 YOUREPM – EXPERIMENT ORCHESTRATION

2.1 FUNCTIONAL REQUIREMENTS

Nowadays, the collaboration between different domains is necessary to achieve successful
results and provide added value. Products, solutions and experiments are more transversal
than some time ago, and the architectures foster the use of decouple components and
services, exposing interfaces to be interconnected. Distributed topologies have been
introduced increasingly by the using of cloud solution allowing to distribute and use solution as
software as a service, without having a deep knowledge about how to install or maintain, only
interested in consuming their functionalities.

Therefore, orchestration of services is more and more necessary for several reasons such as
heterogeneous solutions, not isolated realms, more complex solutions, lack of knowledge in
all the ambits, flexible and modular solutions… Fed4FIRE identifies these trends also for
experiments, fostering the concept of EaaS (Experiment as a Services). Hence, the
introduction of the orchestration tools, such as YourEPM, will allow orchestrating experiments,
providing more complex experiments through transversal domains. YourEPM is based on the
standard BPMN, which allow combining automatic and manual task in a visual way. Due to
this, this orchestration layer over all the Fed4FIRE+ architecture will provide added value and
improve the existing ecosystem.

The aim of adding orchestration of experiments is to enable more complex solution, combining
different testbeds in the same experiment, plus third party services such as ticketing system,
file storage… The tool has to manage the complete lifecycle of the orchestration from the
design to the execution phase.

In order to achieve this, the orchestrator will need to cover the following functional
requirements:

Id: YourEPM-01 Type: FUNC Priority: High

Title: Support Multi-Tenant

Description: The solution has to manage multiples tenants using the same instance. This
allows introducing concepts such as reusability and EaaS-based solution for
Fed4FIRE+.

Communities, companies or universities can be use the same tool to
orchestrate their workflows.

Additional
Information:

Id: YourEPM-02 Type: FUNC Priority: High

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 27 of 47

Title: Design of complex experiments

Description: The component has to allow the definition of complex experiments, where
several steps interact with automatic actions (different experiments) and
manual task (supervision of results, validation of supervisors...). The design
will use a graphical interface, which simplify partially the complexity of the
interactions and automatic actions.

Additional
Information:

This functionality is cover only in the design phase and it should be completely
separated from the execution phase (operational).

Id: YourEPM-03 Type: FUNC Priority: High

Title: Assistant in the selection of the exposed services.

Description: The component has to be integrated with the service directory in order to
facilitate the identification of the services, which should be integrated, and
creation of the complex experiments.

Additional
Information:

There is a component called Service Directory, where the testbed can register
the different services.

Id: YourEPM-04 Type: FUNC Priority: High

Title: Deployment of complex experiments (workflows)

Description: The component will allow deploying the workflow, which defines the complex
experiment.

Additional
Information:

The component should allow to deploy by tenant and only the owner can see
the deployed workflow.

Id: YourEPM-05 Type: FUNC Priority: High

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 28 of 47

Title: Workflow Instance Management

Description: The component allows managing and following the status of workflow
instances, according to the workflow description in complex experiment.

Additional
Information:

The instance only can be managed by the owners of the deployed workflows.

Id: YourEPM-06 Type: FUNC Priority: High

Title: Manage the workflow execution.

Description: The component has to manage all the necessaries actions, when the workflow
instances are running, such as service task (invoke experiments or third party
services) and user tasks (interact with the experimenters).

Additional
Information:

The actions of the instances only can be managed by the owners of the
deployed workflows.

Id: YourEPM-07 Type: FUNC Priority: High

Title: Manage the workflow engine environment.

Description: The component has to manage and follow up the complete workflow
environment such as the deployed workflows, the executed instances, the
different groups or departments, the management of tokens and the different
tenants.

Additional
Information:

The complete lifecycle will be managed by the administrator of the
environment.

Id: YourEPM-08 Type: FUNC Priority: High

Title: Integration with the authentication and authorization of Fed4FIRE+

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 29 of 47

Description: The component will delegate the authentication and authorization to Fed4FIRE
security solution, following user certificates.

Additional
Information:

Id: YourEPM-09 Type: FUNC Priority: High

Title: Management of experimenters and their departments by tenant

Description: Every tenant will manage the workflow usage and they will assign the internal
departments for the different experiments (workflows).

Besides, the component will synchronize automatically the users, roles and
tenants of user accounts.

Additional
Information:

The tenant only can manage his own experimenters and departments.

Id: YourEPM-10 Type: FUNC Priority: High

Title: Management of departments by tenant

Description: Every tenant will manage the workflow usage and they will assign the internal
departments for the different experiments (workflows).

Besides, the component will synchronize automatically the users, roles and
tenants of user accounts.

Additional
Information:

The tenant only can manage his own experimenters and departments

Id: YourEPM-11 Type: FUNC Priority: High

Title: Internal management

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 30 of 47

Description: The component has to manage internal users to cover administration
functionalities. This allows to manage it without depending on the external
authentication, for example, if a problem appears with the Fed4FIRE security
system, it would impede to connect and analyse the problematic situation.

Additional
Information:

Table 4: YourEPM functionalities

2.2 EXPERIMENT SERVICE ORCHESTRATION

In Fed4Fire+ we want to include an experiment service orchestration solution to allow high
level application service orchestration within the federation, i.e. help experimenters to design
and execute in an easy manner cross-testbed processes, even execute services from 3rd party
providers. The most important component from the orchestration solution is called ‘YourEPM’
(Your Experiment Process Model).

YourEPM is a tool based on Activiti BPMN 2.0 software, which is java-based open-source
software designed for Business Process Management and follows open standards such as
BPMN (Business Process Model and Notation). These characteristics will be inherited by
YourEPM. Activiti is not used as a whole in YourEPM, it’s just the subset which best matches
the needs from Fed4Fire+ that is being used. Some of the adaptations we will need to do for
Fed4Fire+ is: integrate with the security solution provided within the project, be multitenant and
change the web-interface to support it, enable the connection with the services provided by
the testbeds from the project.

The other component from the Experiment Service Orchestrations solution, but with less
functionalities, is the Service Directory. It is a simple component where testbed providers can
publish the information about their public services. YourEPM is able to retrieve the information
from the Service Directory, simplifying the definition of the tasks (automatic and manual) and
the own experiment.

Both YourEPM and the Service Directory will be independent components placed in a
centralized manner in the federation domain. In case of YourEPM, the architecture is being
designed in such a way, that two instances can co-exists in different environments. We will
have the design environment and the production environment. This decision has been taken
in order have independent execution of tests while designing from executions that can be done
in production. While designing and testing an experiment an eternal loop can be introduced,
hence we can block a whole instance of YourEPM. Therefore, we must allow stopping the
design environment without influencing a process that is being executed for production.

The authentication is delegated to the Fed4FIRE+ security solution; hence the experimenters’
certificate will be used to identify the user and his/her organization. Only one account in the
ecosystem is recommended to be used by the users in order to improve the quality of the
experience.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 31 of 47

On the other side the orchestration of services requires unattended calls to execute the
automatic task in the definition of the workflows. This kind of call will be executed by the own
workflow engine without any human interaction, so it is necessary to allow the engine to
execute the call on behalf of an user or company. There is a wide range of possible solution
that have been directly decided by who expose the service, then the orchestration tool have to
be as versatile as possible. In Fed4Fire, we have introduced the Speaks-for component that
allows the experimenters to use the services provided by the testbeds in a unified manner,
acting as a wrapper for the service. Nevertheless, we could also integrate with other third party
services outside Fed4FIRE ecosystem and they are using other kind of solution like OAuth2
tokens, basic authentication, bearer tokens… Therefore, the integration will not be able to
cover all the possible solutions, but it will be aligned with Fed4FIRE+ (based on Speaks-for
solution) and the necessary third party services that the project wants to integrate.

The orchestration service will be integrated with services that have been exposed RestFull
interfaces. Some testbed owners might implement a RestFull interfaces for their services, but
some of them not. For those who do not provide a RestFull interface we will use the jFed
component that will act as a wrapper for the service translating from the API REST to SFA.

The following figure depicted the architecture diagram.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 32 of 47

Figure 3: YourEPM Architecture

2.2.1 Service Orchestration Components

As it is already commented in the previous section, two different components will provide the
Experiment Service Orchestration within the federation. These components are the Service
Directory and YourEPM:

It has been already mentioned that the Service Directory is a quite small component that will
record the service description and the URL from a service provided by testbed.

The YourEPM component covers more functionalities needed in fed4Fire+. It is design to
cover different phases of the business process lifecycle: i) the design, where the workflows
have to be created based on the complex experiments definition; ii) the deployment, where the
defined workflows will be deployed iii) the execution, where processes are orchestrates.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 33 of 47

We have to keep in mind that YourEPM will be a centralized component and therefore it has
to implement multitenancy to provide isolation among experimenters and its processes.

The YourEPM users will have assigned one or more roles which will enable them to perform
different tasks:

• Super-user will be able to create the organizations which are allowed to use the
YourEPM solution.

• Administrators associated to an organization will be able to request the tokens to
access to the services from a platform or to a 3rd party service and they can manage
the experimenters of their organization and the different departments involved. They
will be also able to check which tasks have not been assigned to anybody like the
experimenters.

• Experiment designers will be able to design and test new orchestrated experiments.
They will be able to assign the tokens acquired by the administrator to be used to
authenticate the service execution; however, they only will work with the design
environment in order to provide the necessary testing before to release the final version
of the composed experiment.

• Experimenters will be able to execute a deployed workflow (experiment). They can
claim the manual task assigned to their department for their organization. The usage
of token already associated to their organization to request the execution rights will be
transparent for the experimenters. They only need to focus on execution of the
experiment and the results.

Only the super-user will be pre-existing user in YourEPM database. Any other users from any
organization will be created on-the-fly when it logs-in for the first time. The user will present his
Fed4Fire+ certificate in order to access to YourEPM GUI. This certificate will include
information such as the organization that the user belongs to and it might include information
of the user’s role (at least administrator or simple user). YourEPM will extract the information
from the certificate and store it locally.

To access to any service from any testbed provider a speaks-for credential has to be
presented. We already have commented that the administrator will be in charge of requesting
the speaks-for to the testbed in order to authenticate the organization. If needed, they will be
able to add other authentication mechanisms from 3rd party software like Dropbox and the
generation of OAuth2 tokens. For example, a designer would be able to request that the results
from the execution of an experiment are to be recorded in Dropbox.

The Activiti BPMN 2.0 does not include RestFull invocations for the automatic tasks (services
tasks), this is and enhancement that will be done and will be one of the functionalities that will
be supported by YourEPM. A proxy will be implemented that will be able to make RestFull calls
to any component with such interface. During the design of an experiment it has to be specified
that the RestFull proxy has to be used for the service invocation. From the Service Directory,
we will retrieve the URL to be used by the service. Additional parameter might be specified to
be included in the RestFull call. During the experiment execution, the RestFull proxy will
include data like the token and execute the actual call to the service.

The components are decoupling between presentation layer, which is directly related to the
exposed interfaces (Rest API and graphical user interfaces) and the backend, which is
responsible for providing all the functionalities and the respective data persistence. Hence, the
interface layer is responsible for providing the look and feel and how to expose its interfaces
and it is also responsible for managing the necessary calls to the backend layer, which will
execute the corresponding actions needed.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 34 of 47

Front End layer is responsible for exposing the interfaces with the experimenters:

• REST Workflow module is responsible for exposing all the functionalities through a
REST API, allowing other components to interact with the engine pro-grammatically,
without human interaction.

• Explorer Workflow module is responsible for exposing a graphical user interface in
order to interact with the experimenters. Hence, through this exposed dashboard, the
different actors can manage the workflows, allowing interacting with the platform in an
easy way, increasing the quality of experience (QoE). The authentication will be
delegate to the experimenters’ certificates managed by the Fed4FIRE+ security
system.

• Editor Workflow module is responsible for the editing of the workflows at the design
phase. A graphical user interface is used for editing, modifying and generating the
workflows, while the involved actors are the technical designer, who can be contracted
by the brokers to take care of the workflow design task. It interacts directly with the
Service Directory to integrate the exposed services.

Back End Layer is responsible for managing the business logic:

• Core Workflow Engine module is responsible for managing all the functionalities of the
Workflow Engine. Hence, the complexity of the business logic of all these functionalities
is delegated to this module and an interface is exposed to interact with them. It is also
responsible to interact with the data layer and persist the workflows, its instances and
the rest of the entities.

• Workflow Parser module is responsible for managing the functionalities related to
workflow parsing, such as automatic generation of the service task tags to invoke WS
and RestFull services.

• Workflow Data Base module is responsible for persisting all the data in order to support
all the functionalities. The model definition is based on an entity-relationship schema
to represent all the entities, including tenants, roles, workflows, instances and jobs.

YourEPM technical requirements are the same as the ones from Activiti BPMN 2.0 which is a
java based component. Activiti can work with different databases, but in Fed4Fire+ we will only
implement the required functionalities for MySQL database. In addition, we’re going to use the
web-based solution that has to be installed in an application server like tomcat.

The Service Directory is a java based application that runs behind and application server.
The data is also stored in a MySQL database; therefore the requirements are the same as
YourEPM component.

Components Technologies

Workflow Engine
(YourEPM)

Service Directory

Oracle JDK >=1.7

Database: MySQL>=5.0

Application server: Apache Tomcat: >= 6.0

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 35 of 47

Table 5: YourEPM technical requirements

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 36 of 47

3 AUTHENTICATION PROXY SERVICE

3.1 REQUIREMENTS

When building services (such as YourEPM) on top of the federation tools and testbeds, we
want the following:

• Users should be able to use their Fed4FIRE certificate (instead of needing another
authentication method/credentials)

• In Fed4FIRE, users are part of projects (sub-authorities), possible with other users.
Services should have access to this information.

In a more technical way, we want:

• To use Fed4FIRE credentials to authenticate and authorize users in a REST API

• Secure communications between client and server

• Create a reusable component to hide the complexity of certificate processing and SSL
session handling from the backend service

Figure 4: Architecture of authentication proxy service

Figure 4 shows the different parts in the architecture of such an authentication proxy service:

• Authentication proxy:
o Handles SSL connection termination
o Authentication: verifies client certificate with Fed4FIRE authority
o Authorization: fetches all user projects from Fed4FIRE authority
o Forwards this information to the backend service by injecting HTTP Headers

into the request

• REST API: this is the REST API of a 3rd party service

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 37 of 47

3.2 EXAMPLES OF INJECTED HTTP HEADERS

• Fed4Fire-Authenticated: True

• Fed4fire-Authenticated-User-Urn:
urn:publicid:IDN+wall2.ilabt.iminds.be+user+twalcari

• Fed4fire-Authenticated-User-Projects:
urn:publicid:IDN+wall2.ilabt.iminds.be+project+fgre,
urn:publicid:IDN+wall2.ilabt.iminds.be+project+fec1,
urn:publicid:IDN+wall2.ilabt.iminds.be+project+twalcari-test

3.3 ADVANTAGES AND DISADVANTAGES

3.3.1 Advantages

• Reusable for all HTTP backends

• Removes complexity from backend code

• Secure SSL connection with client certificate

3.3.2 Disadvantage

• Access from proxy to backend must be sufficiently secured (bind to localhost, internal
firewall) (this is not really a disadvantage, but rather a point of attention)

• Delay during first call while fetching projects from authority (this should be improved by
making the authority more efficient). After the first call, this info can be cached by the
proxy.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 38 of 47

4 OTHER REQUIREMENTS & VISION ON REQUIREMENTS

When asking users for requirements, it appears they respond typically with very detailed
demands (e.g. a button for doing X would be handy, we need more documentation on this).
These things are handled by the developments of the Federator in WP2.

For the developments in WP3, where we want larger blocks of innovative developments, we
need to tackle the requirements in another way, more specifically we need to extract them
ourselves from looking at the experiments people are doing and where they struggle.

Based on this, we made the following analysis.

4.1 SCALING UP EXPERIMENTS

A lot of experiments are about scaling up the number of resources for testing prototypes. While
scaling up is perfectly possible with the testbeds and tools available, it needs a fair amount of
manual work to get his done.

As an example we take a plenary demo that was shown at GEC22 in Washington, where we
combined multiple testbeds and scaled up to 1000 resources using multiple software defined
exchanges for an international demo (Figure 5).

Figure 5: GEC22 scaling up demo

This demo was built in multiple steps:

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 39 of 47

Figure 6: Build a (small scale) prototype on a single testbed to verify the functional aspects

Figure 7: Build the backbone of the experiment on multiple testbeds

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 40 of 47

Figure 8: Scale up the number of resources

Figure 9: Do the actual experiment

We can conclude from this that it is possible to scale up to large amounts of resources, but it
is not trivial for the average user, so we need something more simple.

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 41 of 47

For this we will look into a more automatic way of scaling up, as shown in Figure 10. An
Experiment Specification (ESpec) as an extension of the RSpec (Resource Specification) is
used to set up all resources and infrastructure. And then in a 2nd step, 3rd party tools, such as
kubernetes kubectl are used to start-stop containers to scale up. Adding a simple webinterface
to this, makes it trivial for a user to scale to e.g. 10.000 containers.

Figure 10: Scale up experiments through ESpec and kubernetes

A similar requirement, namely for ‘large-scale recursive internet experiments’ was identified in
the ARCFire project and was solved by developing a tool called Rumba

(https://arcfire.gitlab.io/rumba/). See also the publication on this: Sander Vrijders, Dimitri
Staessens, Marco Capitani and Vincenzo Maffione, “Rumba: A python framework for automating
large-scale Recursive Internet Experiments on GENI and FIRE+” .

Rumba is a python framework for Automating Large Scale Recursive internet experiments and
helps in building easily large topologies, independent of the testbed used. Figure 11 shows the
architecture of Rumba: multiple plugins are available for deploying the topology e.g. on local
docker containers, testbeds (jFed plugin), or virtual machines. Also plugins are available for
multiple new internet architecture frameworks (e.g. IRATI, Ouroboros, etc). Figure 12 and
Figure 13 show examples of large topologies automatically deployed by Rumba.

Step 1:

ESpec provisions

Nodes + installs

kubernetes

Step 2: control through kubectl

https://arcfire.gitlab.io/rumba/
https://ieeexplore.ieee.org/document/8406981/
https://ieeexplore.ieee.org/document/8406981/
https://ieeexplore.ieee.org/document/8406981/

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 42 of 47

Figure 11: Rumba framework architecture

Figure 12: Large topology with multiple edge networks on the Virtual Wall testbed

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 43 of 47

Figure 13: Large topology on exogeni

4.2 NFV/SDN EXPERIMENTATION

The Fed4FIRE testbeds and tools allow to do low-level NFV and SDN experimentation. E.g.
an experimenter can use software tools as Click or Open vSwitch, or hardware SDN switches
(Figure 14). Some of the experimenters create then their own tools (Figure 15) to make the
NFV experimentation simpler.

Figure 14: Manual experimentation with Click or Open vSwitch

Open vSwitch

Click kernel

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 44 of 47

Figure 15: Experimenters creating their own frontend for easy NFV experimentation

In a similar way, other projects as e.g. Futebol (http://www.ict-futebol.org.br/) or Necos
(http://www.h2020-necos.eu/) have added NFV/5G capabilities on top of Fed4FIRE testbeds
and tools. Figure 16 shows how FUTEBOL uses jFed as a provisioning tool, and then uses
other tools or frameworks such as Tosca or Copa to deploy containers or NFV functions.

http://www.ict-futebol.org.br/
http://www.h2020-necos.eu/

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 45 of 47

Figure 16: Example of Futebol project using the provisioning of Fed4FIRE with an added Tosca/Copa
layer on top

4.3 AUTOMATE EXPERIMENTS

What we also learned from looking at experimenter and project needs, is the need for
reproducibility and automation. Instead of rerunning again and again the same experiments
(and forgetting steps each time), automating everything pays off in the long run for this kind of
experiments. That’s where the ESpec also comes in handy. This is e.g. needed for advanced
software suite testing where testbeds are needed.

Figure 17 shows the example of the F-interop project (www.f-interop.eu). Remote users run
test suites running on a central platform against IoT devices on their desks. If we now automate
all this (deployment of central platform, test suites and using devices on testbeds), we have a
continuous interop and conformance testing platform.

http://www.f-interop.eu/

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 46 of 47

Figure 17: www.f-interop.eu remote interop and conformance testing

Figure 18: Running F-interop on testbeds

D3.1: Requirements and specifications for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 47 of 47

5 CONCLUSIONS

In this deliverable we identified the (user) requirements for the developments in WP3. Detailed
requirements for the SLA, Reputation and YourEPM modules were listed. An authentication
proxy was identified as a module easing interaction with REST based services.

Besides those, we also looked from a bit further away, to identify needs of experimenters and
we found out that Fed4FIRE testbeds do support all kinds of experimentation, but some
experiments (e.g. scaling up, NFV/SDN, automation) can benefit from tools doing a lot of the
work for the user.

In this regard, we see Fed4FIRE as a meta-testbed where others (e.g. other projects) can build
tools on top. Key is then to bring these tools to production quality (with documentation, maturity,
etc). D3.2 goes more into detail on some of these tools that have been implemented.

