

Grant Agreement No.: 732638
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D3.2: Developments for the first
cycle

Work package WP 3

Task Task 3.1-3.5

Due date 30/06/2018

Submission date 12/11/2018

Deliverable lead Imec

Version 4

Authors

Brecht Vermeulen (imec), Wim Van der Meerssche (imec), Thijs Walcarius
(imec), Radomir Klacza (SU), Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA), Aris Dadoukis (CERTH),
Donatos Stavropoulos (CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS), Rowshan Jahan Sathi
(TUB), Alex Willner (TUB), Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

Reviewers Peter Van Daele (imec)

Abstract This deliverable gives an overview of the developments in WP3 during the first
18 months of the project. WP2 are normal operations developments (add
testbeds, fix bugs, small features, etc). WP3 is focussing on larger new
functionality.

Keywords Developments first cycle, new functionality

Ref. Ares(2018)5816683 - 14/11/2018

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 2 of 166

Document Revision History

Version Date Description of change List of contributor(s)

V1 1/06/2018 TOC Brecht Vermeulen (imec)

V2 24/10/2018 First complete version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza (SU),
Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA), Aris
Dadoukis (CERTH), Donatos Stavropoulos (CERTH),
Ana Juan Ferrer (ATOS), Roman Sosa Gonzalez
(ATOS), Joaquin Iranzo Yuste (ATOS), Rowshan
Jahan Sathi (TUB), Alex Willner (TUB), Lucas
Nussbaum (Inria), David Margery (Inria), Cedric
Crettaz (MI)

V3 8/11/2018 Almost final version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza (SU),
Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA), Aris
Dadoukis (CERTH), Donatos Stavropoulos (CERTH),
Ana Juan Ferrer (ATOS), Roman Sosa Gonzalez
(ATOS), Joaquin Iranzo Yuste (ATOS), Rowshan
Jahan Sathi (TUB), Alex Willner (TUB), Lucas
Nussbaum (Inria), David Margery (Inria), Cedric
Crettaz (MI)

V4 12/11/2018 Final version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Radomir Klacza (SU),
Pauline Gaudet Chardonnet (SU), Dimitris
Dechouniotis (NTUA), Costas Papadakis (NTUA),
Aris Dadoukis (CERTH), Donatos Stavropoulos
(CERTH), Ana Juan Ferrer (ATOS), Roman Sosa
Gonzalez (ATOS), Joaquin Iranzo Yuste (ATOS),
Rowshan Jahan Sathi (TUB), Alex Willner (TUB),
Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
Federation for FIRE Plus (Fed4FIRE+); project’s consortium under EC grant agreement
732638 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2017-2021 Fed4FIRE+ Consortium

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 3 of 166

ACKNOWLEDGMENT

This deliverable has been written in the context of a Horizon 2020 European research project,
which is co-funded by the European Commission and the Swiss State Secretariat for
Education, Research and Innovation. The opinions expressed and arguments employed do
not engage the supporting parties.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FED4FIRE+ project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 4 of 166

EXECUTIVE SUMMARY

This deliverable gives an overview of the developments in WP3 during the first 18 months of
the project. WP2 are normal operations developments (add testbeds, fix bugs, small features,
etc). WP3 is focussing on larger new functionality.

WP3 consists out of the following tasks, which are also the sequence of sections in this
deliverable:

• Task 3.1 is focussing on SLA and reputation for testbed usage

• Task 3.2 is focussing on Experiment-as-a-Service (EaaS), data retention and
reproducibility of experiments

• Task 3.3 is targeting Federation monitoring and interconnectivity

• Task 3.4 works on Service orchestration and brokering

• Task 3.5 researches ontologies for the federation of testbeds

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 5 of 166

TABLE OF CONTENTS

DISCLAIMER .. 2
COPYRIGHT NOTICE... 2
ACKNOWLEDGMENT .. 3

1 INTRODUCTION .. 14

2 SLA AND REPUTATION SERVICE ... 15
2.1 SLA DEVELOPMENTS FOR THE FIRST CYCLE ..16
2.1.1 Detailed Architecture ..16
2.1.2 Sequence Diagrams ...17
2.1.3 Requirements Coverage in Iteration 1 ..19
2.1.4 Developments and documentation ...20
2.2 REPUTATION ALGORITHM ...21
2.3 REPUTATION DEVELOPMENTS FOR THE FIRST CYCLE26
2.4 MYSLICE DEVELOPMENTS FOR THE FIRST CYCLE ..29
2.5 FRONTEND ...33
2.5.1 SLA Frontend ...33
2.6 FUTURE WORK ..35
2.7 REFERENCES ..35

3 IMPROVING REPRODUCIBILITY OF EXPERIMENTS – EXPERIMENT-AS-A-
SERVICE .. 36
3.1 EXPERIMENT SPECIFICATION ...36
3.2 THE ESPEC BUNDLE ...37
3.2.1 Format of experiment-specification.yml ..38
3.2.2 Dir details ...40
3.2.3 File content details ...41
3.2.4 Upload details ..45
3.2.5 Execute details ...45
3.2.6 Ansible Support ..47
3.3 USING AN ESPEC IN JFED ..51
3.3.1 Using an ESpec in the jFed Experimenter GUI ...51
3.3.2 ESpec usage in the Federation Monitor..57

4 REPRODUCIBILITY THROUGH CONTINUOUS HARDWARE VERIFICATION
 68
4.1 INTRODUCTION ...68
4.2 CONTEXT: THE GRID’5000 TESTBED ..69
4.3 MOTIVATIONS ..70
4.3.1 Very few bugs are reported ..70
4.3.2 But many bugs should be reported ...71
4.3.3 And bugs can have dramatic consequences ..71
4.4 DESIGN OF OUR TESTBED TESTING FRAMEWORK ..71
4.4.1 Jenkins automation server ...72
4.4.2 Job scheduling ...72
4.4.3 Analyzing and summarizing results ..73
4.4.4 Why Jenkins, after all? ...73
4.4.5 Test scripts ...74

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 6 of 166

4.5 RESULTS AND DISCUSSION ..76
4.6 RELATED WORK ...78
4.6.1 REFERENCES ...79

5 FEDERATION MONITORING .. 81
5.1 INTRODUCTION ...81
5.2 FED4FIRE FLSMONITORING ...81
5.3 FED4FIRE+ NEW MONITORING ..82
5.4 FEEDBACK OF THE MONITORING TO THE USER ..86
5.5 SPECIFIC TESTS ..88
5.5.1 GENI tutorial testing ...88
5.5.2 Testing specific devices, e.g. IoT sensors ..90
5.5.3 Automatically testing software on testbeds ...92
5.5.4 Continuous IoT interop and conformance testing ...93

6 INTERCONNECTIVITY .. 96

7 SERVICE ORCHESTRATION (YOUREPM) .. 97

8 AUTHENTICATION PROXY SERVICE .. 98

9 CENTRAL BROKER .. 99
9.1 INTRODUCTION ...99
9.2 REDESIGN ..99
9.3 NEW CAPABILITIES... 100
9.4 NEW TESTBED SUPPORT... 100
9.5 NEW MYSLICE – VERSION 2 ... 100

10 ONTOLOGIES: USING SEMANTIC WEB TECHNOLOGIES TO QUERY AND
MANAGE INFORMATION WITHIN FEDERATED CYBER-INFRASTRUCTURES 102
10.1 INTRODUCTION ... 102
10.2 RELATED WORK ... 105
10.2.1 Semantic Models For Grids, Clouds and IoT .. 105
10.2.2 OMN Background ... 107
10.3 OPEN-MULTINET ONTOLOGY SET .. 108
10.3.1 Design .. 108
10.3.2 Use of Existing Ontologies ... 113
10.3.3 Implementation ... 113
10.4 INFORMATION QUERYING AND VALIDATION .. 114
10.4.1 DBcloud Application For Federated Experimental Infrastructures 114
10.4.2 Knowledge Extension and Information Querying .. 117
10.4.3 Validation ... 121
10.5 PERFORMANCE EVALUATION ... 122
10.6 CONCLUSION AND FUTURE WORK .. 127
10.7 ABBREVIATIONS ... 127
10.8 REFERENCES .. 129
10.9 DESCRIPTION OF MATCHMAKING CAPABILITIES ... 132

11 COLLABORATION WITH THE RAWFIE PROJECT ON ONTOLOGIES FOR
UNMANNED VEHICLES AND SENSORS... 135
11.1 SEMANTIC BASED RESOURCE DESCRIPTION .. 135
11.1.1 SAMANT UxV Ontology ... 136

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 7 of 166

11.1.2 SAMANT Sensor Ontology ... 138
11.2 REFERENCES .. 140

12 APPENDIX : SLA COMPONENT FIRST CYCLE DOCUMENTATION 142
12.1 API DOCUMENTATION .. 142
12.1.1 API Introduction .. 142
12.1.2 Generic operations ... 142
12.1.3 Providers .. 149
12.1.4 Templates .. 150
12.1.5 Agreements .. 153
12.1.6 Enforcement Jobs .. 158
12.1.7 Violations ... 160
12.1.8 Penalties .. 161
12.2 INSTALLATION GUIDE .. 162
12.2.1 Requirements ... 162
12.2.2 Installation .. 162
12.2.3 Configuration .. 163
12.2.4 Compiling ... 164
12.2.5 Running .. 164
12.2.6 Logging .. 165
12.2.7 Testing ... 165
12.2.8 Adapters ... 166
12.2.9 Security access .. 166
12.2.10 Running with other applications .. 166

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 8 of 166

LIST OF FIGURES

FIGURE 1: FED4FIRE+ SLA AND REPUTATION SERVICE ARCHITECTURE16

FIGURE 2: SLA FRAMEWORK INTERNAL ARCHITECTURE ...17

FIGURE 3: HRS MODEL FOR FED4FIRE+ TESTBEDS ...22

FIGURE 4: CREDIBILITY MECHANISM OF HRS ...26

FIGURE 5: REPUTATION SERVICE ARCHITECTURE ..27

FIGURE 6: GUI TO CHECK AGREEMENTS STATUS ..34

FIGURE 7: AGREEMENT ASSESSMENT VIEW ...34

FIGURE 8: ESPEC BUNDLES RSPEC, FILES TO BE UPLOADED AND SCRIPTS37

FIGURE 9: THE 'OPEN ESPEC' BUTTON ..51

FIGURE 10: OPENING AN ESPEC FROM A LOCAL ARCHIVE FILE52

FIGURE 11: OPENING AN ESPEC FROM A LOCAL DIRECTORY53

FIGURE 12: OPENING AN ESPEC FROM AN EXTERNAL ARCHIVE53

FIGURE 13: OPENING AN ESPEC FROM A GIT(HUB) REPOSITORY54

FIGURE 14: EXPERIMENT START DIALOG ..54

FIGURE 15: EXPERIMENT SPECIFICATION STATUS, WAITING FOR THE TESTBED
RESOURCES IN THIS EXPERIMENT ...55

FIGURE 16: EXPERIMENT SPECIFICATION STATUS, EXECUTING A SCRIPT55

FIGURE 17: OUTPUT OF THE SCRIPT BEING EXECUTED ..56

FIGURE 18: CONTEXT MENU OF A 'STEP' IN THE EXPERIMENT SPECIFICATION
EXECUTION ..56

FIGURE 19: A SUCCESSFULLY EXECUTED EXPERIMENT SPECIFICATION57

FIGURE 20: LIFECYCLE STEPS OF A 'LOGIN TEST' ...58

FIGURE 21: LIFECYCLE STEPS OF AN ESPEC TEST ...65

FIGURE 22: OUTPUT FROM AN 'ANSIBLE'-COMMAND IN AN ESPEC66

FIGURE 23: OUTPUT FROM THE ANSIBLE TEST-PLAYBOOK66

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 9 of 166

FIGURE 24: VISUALISATION OF THE INFORMATION EXTRACTED FROM AN ANSIBLE
TEST-PLAYBOOK ...67

FIGURE 25:GRID’5000 SITES AND INTERCONNECTION NETWORK..............................69

FIGURE 26: HISTORICAL STATUS FOR EACH JOB, AS PROVIDED BY MUNIN75

FIGURE 27: STATUS PAGE FOR ALL TESTS AND SITES ...75

FIGURE 28: EXCERPT OF THE OPENIBD SCRIPT (PART OF THE OFED INFINIBAND
STACK, AND RESPONSIBLE FOR STARTING IT DURING BOOT). THE USE OF GREP
$APP CAUSED RANDOM FAILURES TO START, AS ANY UNRELATED PROCESS WITH
E.G. LIBNSS IN THIS COMMAND LINE WOULD CAUSE THE TEST TO SUCCEED, AND
THE SERVICE TO ABORT START UP. THE IMAGE WAS UPDATED TO A NEWER
VERSION OF THE OFED SCRIPT, WHICH SWITCHED TO USING PGREP FOR MORE
RELIABLE PROCESS MATCHING. ..77

FIGURE 29: SCREENSHOT OF FEDERATION MONITORING IN THE FED4FIRE PROJECT
(2012-2016) ..81

FIGURE 30: BASIC MONITORING SETUP ...82

FIGURE 31: SCREENSHOT OF FRONT-END OF HTTPS://FEDMON.FED4FIRE.EU83

FIGURE 32: MAP VIEW OF HTTPS://FEDMON.FED4FIRE.EU ..84

FIGURE 33: ICON OVERVIEW OF A SINGLE TESTBED (PING,
GETVERSION/LISTRESOURCES, LOGIN TEST, NUMBER OF FREE AND TOTAL
RESOURCES, HEALTH STATUS) ..84

FIGURE 34: WHEN HOVERING OVER THE ICONS, THE USER CAN GET MORE
INFORMATION, E.G. WHY THE HEALTH STATUS IS NOT 100%84

FIGURE 35: MORE DETAILED INFORMATION PER TESTBED ..84

FIGURE 36: EVOLUTION OVER TIME OF FREE AND TOTAL RESOURCES OF A
TESTBED ..85

FIGURE 37: EVOLUTION OVER TIME OF THE TESTBED UPTIME (1 SQUARE IS A
SINGLE DAY) ..85

FIGURE 38: ZOOMED OUT OVERVIEW OF ALMOST ALL MONITORED TESTBEDS86

FIGURE 39: TESTBED AND RESOURCE AVAILABILITY VISIBLE IN JFED87

FIGURE 40: JFED AVAILABILITY RESOURCES AND RESOURCES PER HARDWARE
TYPE ..88

FIGURE 41: GENI TUTORIAL TESTING ...90

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 10 of 166

FIGURE 42: EXOGENI MONITORING INTEGRATED IN THE WWW.EXOGENI.NET
WEBPAGE ...90

FIGURE 43: W-ILAB.T WEEKLY TESTING OF ALL NODES ...91

FIGURE 44: EXTRA INFO WHEN CLICKING + AT THE LEFT ...91

FIGURE 45: ANSIBLE OUTPUT OF W-ILAB.T NODE TEST ..92

FIGURE 46: WISHFUL SOFTWARE TESTING, WHEN CLICKING ON ‘DETAILS’ MORE
INFO ON THE TEST CAN BE SEEN ...93

FIGURE 47: DAILY F-INTEROP PLATFORM TESTING ...94

FIGURE 48: F-INTEROP COAP INTEROP TESTING AUTOMATICALLY ON FED4FIRE
TESTBEDS ..95

FIGURE 49: JFED VISUALISATION OF DIFFERENT INTERCONNECTIVITY METHODS 96

FIGURE 50: YOUREPM ARCHITECTURE ..97

FIGURE 51: GPULAB CLIENT ..98

FIGURE 52: CENTRAL BROKER ...99

FIGURE 53: MYSLICE V2 ARCHITECTURE ... 101

FIGURE 54: THE EXPERIMENT LIFE-CYCLE PHASES AND PROTOCOLS 108

FIGURE 55: OPEN-MULTINET ONTOLOGY HIERARCHY .. 109

FIGURE 56: THE KEY CONCEPTS AND PROPERTIES OF THE OMN UPPER ONTOLOGY
 ... 110

FIGURE 57: OPEN-MULTINET (OMN) FEDERATION ONTOLOGY 112

FIGURE 58: OMN EXTRACTION FRAMEWORK AND LOOKUP SERVICE (BASED ON
[4,55]) .. 115

FIGURE 59: PARTIAL NETMODE OFFERING ... 118

FIGURE 60: SIZE DISTRIBUTION OF RSPEC ADVERTISEMENTS (LOGARITHMIC) 123

FIGURE 61: JAXB TO RDF TRANSLATION TIMES VERSUS NUMBER OF XML
ELEMENTS [4] .. 124

FIGURE 62: LISTING/TRANSLATING RESOURCE INFORMATION 125

FIGURE 63: PERFORMANCE COMPARISON OF QUERIES ... 126

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 11 of 166

FIGURE 64: ARCHITECTURE OF THE HYBRID APPROACH FOR SEARCHING IN THE
SEMANTIC WEB. .. 133

FIGURE 65: OMN SUITE ... 136

FIGURE 66: OMN UXV ONTOLOGY ... 138

FIGURE 67: OMN SENSOR ONTOLOGY ... 140

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 12 of 166

LIST OF TABLES

TABLE 1: SLA FUNCTIONAL REQUIREMENTS ..19

TABLE 2: SLA SOFTWARE REQUIREMENTS ..20

TABLE 3: LINGUISTIC TERMS AND MEMBERSHIP FUNCTIONS OF FUZZY NUMBERS
 ...23

TABLE 4: REPUTATION SERVICE REQUIREMENTS ...28

TABLE 5: NITOS MONITORING REST API ..28

TABLE 6: NETMODE MONITORING REST API ...29

TABLE 7: REPUTATION FUNCTIONAL REQUIREMENTS ..29

TABLE 8: MYSLICE REST API CALLS ..30

TABLE 9: RESOURCE SPECIFICATIONS ... 117

TABLE 10: RESULTS OF THE PERFORMANCE EVALUATION 126

TABLE 11: UXV ATTRIBUTES ... 137

TABLE 12: SENSOR ATTRIBUTES .. 139

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 13 of 166

ABBREVIATIONS

FIRE Future Internet Research and Experimentation

JSON JavaScript Object Notation

SLA Service Level Agreement

SLO Service Level Objective

XML eXtensible Markup Language

WSAG Web Service-Agreement

API Application Programming Interface

XML-RPC: Extensible Markup Language Remote procedure call

REST REpresentational State Transfer

AM Aggregate Manager

QoS Quality of Service

QoE Quality of Experience

MVC Model-View-Controller

O/RM Object-relational mapping

GUI Graphical User Interface

CLI Command Line Interface

HRS Hybrid Reputation System

KPI Key Performance Indicator

FAHP Fuzzy Analytic Hierarchical Process

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 14 of 166

1 INTRODUCTION

This deliverable gives an overview of the developments in WP3 during the first 18 months of
the project. WP2 are normal operations developments (add testbeds, fix bugs, small features,
etc). WP3 is focussing on larger new functionality.

WP3 consists out of the following tasks, which are also the sequence of sections in this
deliverable:

• Task 3.1 is focussing on SLA and reputation for testbed usage

• Task 3.2 is focussing on Experiment-as-a-Service (EaaS), data retention and
reproducibility of experiments

• Task 3.3 is targeting Federation monitoring and interconnectivity

• Task 3.4 works on Service orchestration and brokering

• Task 3.5 researches ontologies for the federation of testbeds

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 15 of 166

2 SLA AND REPUTATION SERVICE

The overall objective of SLA management in FED4FIRE+ is to provide the capability to testbed
providers and experimenters to establish agreements with regards to the use of the
experimentation infrastructure, validate the enactment of these agreements; as well as; to be
notified in cases of not fulfilment of the agreements. The functional requirements of this
component, its fit into the FED4FIRE+ overall architecture and initial details on its internal
architecture were already presented in D3.01 Requirements and Specifications for the first
cycle. In this deliverable we further elaborate on its internal design and we present in detail its
implementation for the first cycle together with specification of APIs provided installation and
user guides.

Since FED4FIRE+ provides many heterogeneous testbeds with similar resources, the
selection of the appropriate resources by the experimenters becomes a tedious task. Thus, a
trust mechanism between the testbed providers and FED4FIRE+ users must be established in
order to facilitate the testbed and resources selection. The trust is defined as the subjective
belief of entity A, that entity B performs a given action [1]. Reputation is a complementary
concept that helps entities to trust each other. Reputation is defined as “the general belief
about a person’s or thing’s character or standing”, according to Concise Oxford Dictionary. In
this deliverable, we present the details of the new reputation algorithm and the progress on the
development of the reputation service according to the functional requirements of D3.01
Requirements and Specifications for the first cycle.

Figure 1 illustrates the overall architecture of SLA and Reputation Service of FED4FIRE+
project. As shown below, the experimenter should interact with the Reputation Service through
jFed or the Portal (MySlice v2) at the end of the conducted experiment by sending his/her
evaluation for every testbed used in the experiment through the GUI. The Reputation Service
will retrieve the data needed for the reputation score calculation from every testbed used
through monitoring data APIs and through the SLA collector as explained more thoroughly in
the sections below. Every testbed must provide a REST API for monitoring data and install the
SLA components.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 16 of 166

Figure 1: FED4FIRE+ SLA and Reputation Service Architecture

2.1 SLA DEVELOPMENTS FOR THE FIRST CYCLE

2.1.1 Detailed Architecture

The SLA Component internal architecture is detailed in Figure 2. The architecture details the
three main components of this component: SLA Dashboard, GUI that permits testbed providers
to define agreements; SLA Collector, which interfaces with each testbed monitoring data to
collect metrics and allows subscription of other components to receive violations and penalties
resultant of not fulfillment of the agreed SLAs ; and the SLA management module (SLA Core)
responsible of implementing the business logic of validating metrics from existing agreements
and raising alarms in agreement breach situations.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 17 of 166

Figure 2: SLA Framework internal architecture

2.1.2 Sequence Diagrams

The following sequence diagrams detail the main operations performed in the SLA
Management module (Core) in order to evaluate an SLA.

SLA enforcement process details the steps used to evaluate that an established agreement is
fulfilled by a provided. More in detail, this is the process in which collected monitoring values
are assessed to understand if they fulfil the provided constraints. Depending on configuration
of the core, the evaluation process happens on demand or at a certain periodicity period.

2.1.2.1 Periodic agreement enforcement

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 18 of 166

2.1.2.2 On demand agreement enforcement

2.1.2.3 Agreement evaluation

The following classes are used in the SLA evaluation process:

AgreementEnforcement: collects by means of the SLACollector the configured metrics
necessary to measure the enforcement of an agreement. It interfaces with
AgreementEvaluator to detect if a violation or non-fulfilment case has happened. In this case,
collected values are stored in its internal repository.

AgreementEvaluator: invokes GuaranteeTermEvaluator per all guarantee terms in the
agreement.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 19 of 166

GuaranteeTermEvaluator: calls ServiceLevelEvaluator to obtain triggered violations; in this
case ot invokes BusinessValuesEvaluator using the violations as input.

ServiceLevelEvaluator: computes generated violations. Diverse evaluators can be used. In
Fed4FIRE+ the followed approach is based on policies. The policy determines the repetitions
a violation metric has to occur in a certain time period so to incur into a violation.

ConstraintEvaluator. Per each agreed term, it isolates the service level constraint, and
assesses if a collected monitoring metric adheres to the defined constraint.

MetricsRetriever. It performs periodic queries to collect last metrics obtained by an agreement.
It is used in periodic execution evaluation.

MetricsReceiver. It invokes SLA Collector to receive last metrics gathered from an agreement.
It is used in on-demand execution evaluation.

2.1.3 Requirements Coverage in Iteration 1

Table 1 presents the SLA Components requirements defined in D3.01 Requirements and
Specifications deliverable, providing explanations on the maturity achieved in the first cycle
and expected related next steps. These are later summarised in section 1.4 Future work.
Requirements indicated in green are considered to be completed with provided version in first
cycle.

Table 1: SLA Functional Requirements

ID Title Coverage in First cycle

SLA_01 SLA solution must cover the whole
lifecycle specified in WS-Agreement

The first cycle implementation fulfils
this requirement.

SLA_02 SLA solution REST interface The rest interface is provided and
detailed in next subsection of this
deliverable.

SLA_03 SLA solution Subscription mechanism In this first cycle metrics collection
mechanism has yet to support
subscription.

SLA_04 SLA solution multitenant The SLA solution supports
multitenancy by being capable of
managing diverse providers without
interference. Additional development
will be required in order to
synchronize databases among
testbeds.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 20 of 166

SLA_05 SLA Dashboard A basic SLA Dashboard exist for first
cycle. This has yet to be integrated
with new version of MySlide.

SLA_06 Agreement creation and enactment This requirement is contained into
previous requirements SLA_01.
Therefore, it is achieved in first cycle,
representing basic component
functionality

SLA_07 SLA terms quantizable For this initial cycle testbeds making
use of the SLA management (NTUA
and Nitos) have decided to overall
availability metric. Further
refinements of this metrics will require
of validation.

SLA_08 SLA access to monitoring data SLA management is able to collect
metrics from the two testbeds in
which it is installed. Additional
federation mentioning support
requires of adapting existing
implementation to python and will be
performed in upcoming cycles .

SLA_09 Distributed federation architecture. As detailed in previous sections, the
SLA is integrated into the Fed4FIRE+
Federated architecture, having initial
deployments in two of the existing
testbeds.

SLA_10 SLA solution software dependencies SLA Management solution provides
REST interfaces which makes them
available regardless their
programming language being python
or java.

2.1.4 Developments and documentation

Table 2 summarizes the software requirements of the SLA Developments in the first iteration.

Table 2: SLA Software Requirements

Components Technologies

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 21 of 166

SLA Dashboard – SLA
collector

Mysql >= 5.0

Python >= 2.7

SLA Manager
Mysql >= 5.0

Oracle JDK >=1.7

Detailed documentation has been produced for this first cycle development which is provided
as Annex 1 to this document. This documentation includes:

• SLA which provides detailed instructions about APIS provided and their usage.

• SLA User Guide, detailing steps for use and configuration of provided software

• SLA Installation Guide, addressed to testbed owners so to facilitate component
installation guidance.

2.2 REPUTATION ALGORITHM

The Reputation Service of the Fed4Fire project was based on FTUE reputation framework [2].
For a conducted experiment, this framework used some predefined QoS metrics, e.g., Node
Availability, and two QoE metrics, named Overall Experience and Quality, to update the
reputation score per testbed per service. Furthermore, the credibility of the users was
measured and considered on the final computation of the reputation score. The computation
of the experimenter’s credibility was based on the difference between the measured QoS
metrics and the opinion of the user. The QoS and QoE variables had a specific set of numeric
values, i.e., 1-5. Furthermore, no SLA data were used on the computation of the reputation
score.

In the context of FED4FIRE+ and based on the FTUE framework, we implement a new
reputation algorithm with better malicious user filtering. The new Hybrid Reputation Service
(HRS) is actually a multi-criteria decision-making system with hierarchical structure, which can
easily scale up. HRS leverages several QoS key performance indicators (KPIs), such as Node
Availability, Link Availability and Server Availability, and QoE KPIs, e.g. Usability, Document
Readability, testbed owner’s support, in a hierarchical and scalable structure. The QoE KPIs
are expressed by fuzzy variables. Fuzzy logic is suitable to express the nature of QoE KPIs.
Thus, a set of linguistic values, such as ‘Poor’, ‘Good’ and ‘Excellent’, will be used for the user
input and these terms will be mapped to the corresponding fuzzy values. Furthermore,
FED4FIRE+ reputation service exploits SLA data to accurately update the experimenter’s
credibility score. This new service is able to provide an overall reputation score per testbed or
an individual score per service per testbed. HRS is implemented in the Reputation Engine of
SLA and Reputation Service in Figure 1.

HRS is based on the principles of Fuzzy Analytic Hierarchical Process (FAHP) [3]. FAHP is
widely used on various cases, such as product design, operational research and cloud services
[4]. FAHP is a ranking method based on numeric QoS and fuzzy QoE KPIs, e.g., node

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 22 of 166

availability and support satisfaction respectively. In order to compute the reputation score of
federated testbeds, several modifications are required. There are three key differences with
respect to FAHP between our HRS, and the provider selection use cases, such as in [5]. First,
our approach allows the users to assign their weights on the criteria according to their
experiment’s goals. Secondly, we compare the evaluation of an experiment conducted on a
testbed with an ideal rating of a virtual user, which contains the best values of all criteria.
Finally, the experimenter’s credibility is considered in the computation of the reputation score
in order to ensure the fair judgment of testbeds. In the following, the phases of the proposed
HRS are analytically described.

Figure 3: HRS Model for FED4FIRE+ Testbeds

Phase 1 - Selection of testbed KPIs

The testbed owner determines the technical (QoS) and the user experience (QoE) KPIs and
attributes that are used in the computation of the reputation score of the testbeds. Figure 3
shows a possible hierarchical structure with KPIs and attributes and highlights which of them
are provided by each testbed. The difference between KPIs and attributes is that a KPI
measures a specific technical or experience metric, while an attribute summarizes several
KPIs of relevant metrics. At a specific level, the attributes can be further decomposed into the
sibling attributes or KPIs of the lower level, while the KPIs cannot be decomposed further.
Adopting SMICloud approach [6], numerical KPIs and attributes are represented by numeric,
Boolean, unordered sets and range values. On the contrary, the QoE KPIs are represented by
fuzzy numbers. In Figure 3, pink (right) and purple (left) colored KPIs refer to fuzzy and
numerical attributes respectively. Table 1 contains the linguistic terms and the membership
functions of the fuzzy numbers used for QoE attributes.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 23 of 166

Phase 2 - Weight Assignment

FED4FIRE+ experimenters use the federated testbed possibly focusing on different objectives.
Thus, the importance of each attribute in the hierarchical structure is assigned by the
experimenters themselves in a flexible manner. In the hierarchical model of Figure 3, each
edge between two nodes has a weight that reflects the importance of the lower level attribute
or KPI on the computation of the upper level attribute’s value. The value of a weight is positive
and less than one, while the sum of the assigned weights of the edges that links a group of
nodes with their ancestor node is equal to one. Since the weights are derived from the
subjective preferences of individuals, the final computation of reputation can still be based on
inconsistent and conflicting KPIs and attributes. Thus, in order to avoid such inconsistencies,

Table 3: Linguistic terms and Membership Functions of Fuzzy numbers

Linguistic Term Membership Function

Very Poor (VP) (1, 2, 3)

Poor (P) (3, 4, 5)

Medium (M) (4, 5, 6)

Good (G) (5, 6, 7)

Very Good (VG) (6, 7, 8)

Excellent (E) (7, 8, 9)

the Consistency Ratio (CR) [7] is calculated for each group of sibling attributes. The CR is the
degree of the randomness in the weight assignment between several sibling attributes. CR
values less than 0.1 are acceptable to continue to the next phase, otherwise the experimenter
must correct the assigned weights.

Phase 3 - Computation of relative attribute importance

After the conduction of an experiment, the user submits his rating for the QoS and QoE KPIs
for all the participating testbeds. These ratings of QoS KPIs are modified taking into account
the credibility of the experimenter, as it is analyzed in the following subsection III. The modified
experimenter’s ratings are compared against the ideal rating of a virtual user. The ideal rating
is used to measure the distance between the actual performance of a testbed during an
experiment and its perfect performance according to the experimenter’s preferences. This is
achieved by computing the Relative Attribute Comparison Matrix (RACM) for each KPI and
attribute of the hierarchical model. Given the ideal rating AV and the modified user’s rating 𝐴~𝑢
for the X KPI or attribute, RACMX is defined as follows,

𝑅𝐴𝐶𝑀𝑋 = [
1 𝐴𝑢~ 𝐴𝑢⁄

𝐴𝑢 𝐴𝑢~⁄ 1
]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 24 of 166

If any KPI or attribute is numerical, the division of the ratings in RACMA is done according to
Table 1 of [5, Section 3]. Otherwise, for fuzzy KPIs and attributes, the arithmetic operations on
fuzzy numbers of [5, Section 3.1] are used.

Phase 4 - Computation and update of reputation

In the case of numerical KPIs and attributes, the extended AHP approach, similarly to
SMICloud, is applied. For the fuzzy KPIs, the extended analysis on FAHP is adopted according
to Chang’s approach [3]. The combination of these methodologies uses the RACM of each
KPI and attribute at any of the hierarchical model in order to calculate the score vector of all
intermediate attributes and the top level reputation attribute. For the fuzzy RACMs, the
following steps of extent analysis on FAHP [13] are applied. Let the N-dimension fuzzy

𝑅𝐴𝐶𝑀𝐴𝐴 = [𝑎𝑖𝑗], 𝑖, 𝑗 = 1,… ,𝑁 , , the fuzzy synthetic extent is defined by,

𝐷𝑖 = (𝐷𝑖
𝑙, 𝐷𝑖

𝑚, 𝐷𝑖
𝑢) =∑𝑎𝑖𝑗

𝑁

𝑗=1

⊗(∑∑𝑎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

)

−1

We find the attribute with the higher fuzzy synthetic degree by computing the degree of
possibility for a fuzzy number to be greater than other one,

𝑉(𝐷𝑖 ≥ 𝐷𝑗) = ℎ𝑔𝑡(𝐷𝑖 ∩ 𝐷𝑗) =

{

1

𝐷𝑗
𝑙 − 𝐷𝑖

𝑢

(𝐷𝑖
𝑚 − 𝐷𝑖

𝑢) − (𝐷𝑗
𝑚 − 𝐷𝑗

𝑙)

0

𝑖𝑓𝐷𝑖
𝑚 ≥ 𝐷𝑗

𝑚

𝑖𝑓𝐷𝑖
𝑚 ≤ 𝐷𝑗

𝑚 ∧ 𝐷𝑗
𝑙 ≤ 𝐷𝑖

𝑢

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The degree of possibility that a fuzzy synthetic extent Di is greater than the rest synthetic fuzzy
extents of the fuzzy RACM is,

𝑑𝑖 = 𝑉(𝐷𝑖 ≥ 𝐷𝑘 ,⩝ 𝑘 = 1,… , 𝑁, 𝑘 ≠ 𝑖) = 𝑚𝑖𝑛𝑉(𝐷𝑖 ≥ 𝐷𝑗)

Finally, the normalized comparison vector is obtained,

𝑐 = [𝑐1…𝑐𝑁]
𝑇𝑤ℎ𝑒𝑟𝑒𝑐𝑖 =

𝑑𝑖
∑ 𝑑𝑘
𝛮
𝑘=1

At any level of the testbed’s hierarchical model, we calculate the comparison vector for each
attribute with the following bottom-up procedure. Given the weights of Phase 2, the ratings of
the experimenter and the ideal rating, we start from the level, where KPIs exist, compute the
comparison vector of the parent attribute by the comparison vectors of the sibling KPIs or
attributes. Assuming a parent attribute with M sub-attributes and the weight vector with M
elements, the comparison vector of the parent attribute is defined,

𝑐𝑝𝑎𝑟 = [
𝑐1
𝑢~ ⋯ 𝑐𝑠𝑢𝑏𝑀

𝑢~

𝑐1
𝑢 … 𝑐𝑠𝑢𝑏𝑀

𝑢] [

𝑤1
⋮

𝑤𝑠𝑢𝑏𝑀
] = [

𝑐𝑝𝑎𝑟
𝑢~

𝑐𝑝𝑎𝑟
𝑢]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 25 of 166

Reaching the top level of the hierarchical model, the normalized comparison vector for the

Testbed Reputation attribute is computed, 𝑐𝑟𝑒𝑝 = [𝑐𝑟𝑒𝑝
𝑢~ 𝑐𝑟𝑒𝑝

𝑣]𝑇. The first element of this vector

refers to the experimenter evaluation, while the second corresponds to the best possible rating
of the virtual user. The difference between the two elements indicates the distance between
the actual performance as interpreted by the experimenter, and the perfect performance of the
testbed. Thus, for the nth conducted experiment, the testbed’s reputation score is computed
by,

𝑅𝑒𝑥𝑝
𝑇 =

𝑐𝑟𝑒𝑝
𝑢~

𝑐𝑟𝑒𝑝
𝑢 100%

After n completed experiments, the overall reputation value of the testbed is updated,

𝑅𝑛
𝑇 =

(𝑛 − 1)𝑅𝑛−1
𝑇 + 𝑅𝑒𝑥𝑝

𝑇

𝑛

Credibility Mechanism

The credibility mechanism, developed for HRS, aims at reducing the impact of malicious users
in the computation of reputation score. The credibility mechanism takes into account the QoS
KPIs and the respective SLA value. Essentially, the experimenter’s subjective opinion, the
predefined SLA and the monitoring value are compared in order to check the divergence
between the rating and the testbed’s actual performance. In this process the non-technical
QoE KPIs are excluded due to their subjective nature.

Figure 4 shows the credibility mechanism in algorithmic fashion. The represented process
concerns the use of one testbed for one experiment. Nevertheless, in an experiment
procedure, users can use more than one testbeds. In that case the experimenter’s credibility
value is sequentially calculated for every testbed. Considering the user’s opinion (ratings) for

every QoS KPI, as the vector 𝑈𝑂 = [𝑈𝑂𝑖]
𝑇 , 𝑖 = 1,… , 𝑘 and the corresponding vectors for the

monitoring data, 𝑀𝐷 = [𝑀𝐷𝑖]
𝑇 , 𝑖 = 1,… , 𝑘 and SLA data, 𝑆𝐷 = [𝑆𝐷𝑖]

𝑇 , 𝑖 = 1,… , 𝑘, the algorithm
computes the updated credibility value for the specific experimenter and a vector with the
updated ratings for the QoS KPIs as those modified by the credibility mechanism, 𝑈𝑂~ =
[𝑈𝑂~ 𝑖]

𝑇 , 𝑖 = 1,… , 𝑘 respectively. For each KPI of the testbed, the threshold and correction
vectors are initialized (lines 4-5). The elements of the threshold vector express the tolerance
against an opinion and is based on the deviation of the monitoring data from the SLA reference
value (lines 6-13). The elements of the correction vector are actually a credibility value for each
KPI. The user’s credibility for an experiment is calculated as the average value of the correction
vector. Then, the overall user’s credibility is updated according to lines 15-16. For each KPI,
we adapt the experimenter’s opinion if the difference between the opinion and the monitoring
data is greater than the respective threshold value. The modified opinion is based on the
monitoring value, the updated user’s credibility and the threshold value (lines 17-27). The
modified opinions on KPIs are used in Phase 3 of HRS.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 26 of 166

Figure 4: Credibility Mechanism of HRS

2.3 REPUTATION DEVELOPMENTS FOR THE FIRST CYCLE

As described in the previous section, HRS has been developed and deployed as a prototype
version for early integration and testing for the first cycle. The Reputation Service has been
deployed as a centralized service on the Ruby on Rails MVC Framework. The architecture of
this testing phase is depicted in Figure 5. For the early testing phase, the NETMODE and
NITOS testbed were used. At this stage, the Reputation Service is not interconnected with the
platform as a whole. The testing and execution of the experiment evaluation lifecycle was
conducted through REST API calls with no Reputation Service frontend tools.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 27 of 166

Figure 5: Reputation Service Architecture

The rating lifecycle goes as follows:

After the completion of an experiment, the experimenter evaluates the testbeds used in the
experiment and the ratings are submitted to the Reputation Service through the Rest API.
Then, the Reputation Service Engine retrieves the SLA agreement and the monitoring data for
the utilized resources and updates the involved testbeds’ reputation score and the user’s
credibility as described previously. Finally, the results are stored in the Reputation Service
Database and the updated reputation value is returned to the experimenter as a response to
the initial API call. The above procedure is shown also in the sequence diagram below.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 28 of 166

As shown by the testing architecture layout, the only requirement to integrate a testbed with
the reputation service is to install the SLA components following the instructions provided in
Appendix A. Furthermore, a Rest API must be developed or installed as a wrapper for the
monitoring data database. Both steps have been completed and tested in NITOS and
NETMODE testbeds. Although the SLA installation is no testbed specific, minor modifications
are required for each testbed in order to evaluate the monitoring metrics, e.g., availability, and
configure it to retrieve the appropriate monitoring data from the monitoring data API. For the
monitoring data APIs the solution differs for each testbed. The different approaches depend
on the database each testbed uses for storing monitoring data. In this cycle two wrappers have
been used. One developed by NITOS for MySql database and one in NETMODE for
PostgreSQL database with PostgREST API installed. Tables 4-6 show the utilized software
tools for the Reputation Service and the monitoring REST APIs in NETMODE and NITOS
testbeds.

Table 4: Reputation service requirements

Components Technologies

Reputation Service API
and Computation Engine

Rails = 5.1.4

Ruby >= 2.2.2

Reputation Service
Database

PostgreSQL = 10.3

Table 5: NITOS monitoring Rest API

Components Technologies

Monitoring Data Database MySql 5.5.32

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 29 of 166

Rest API Ruby 1.9.3p484, Sinatra 1.0

Table 6: NETMODE monitoring Rest API

Components Technologies

Monitoring Data Database PostgreSQL >= 10

Rest API PostgREST v0.4

D3.01 Requirements and Specifications deliverable describes the functional requirements of
the Reputation Service. The highlighted functional requirements in Table 7 are achieved by
the developments for the first cycle.

Table 7: Reputation functional requirements

ID Title Coverage in First cycle

REP_01 Reputation Service REST interface The first cycle implementation fulfils
this requirement.

REP_02 REST API documentation The REST API documentation is not
complete and it is expected to be
ready at the first semester of the
second cycle.

REP_03 Reputation computation engine In this first cycle HRS is developed,
and tested in NETMODE and NITOS
testbeds

REP_04 Reputation Service access to monitoring
and SLA data

The first cycle implementation fulfils
this requirement.

2.4 MYSLICE DEVELOPMENTS FOR THE FIRST CYCLE

The new architecture is composed of 5 layers with a clear separation of concerns: Web
frontend, APIs (REST/WS), Database, Services with workers and Library (XML-RPC).

UPMC was working on implementing the backend using Python and frontend using JS REACT.
As a result, fully functional web service was implemented including testing suites for the REST
calls.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 30 of 166

Below table is summarizing REST API calls and status of its implementation:

Table 8: MySlice REST API Calls

REST call Implementation status

Authentication and Activity

2.1 User authentication and profile IMPLEMENTED

2.1.1 POST /login IMPLEMENTED

2.1.2 GET /usertoken IMPLEMENTED

2.1.3 POST /usertoken IMPLEMENTED

2.1.4 GET /profile IMPLEMENTED

2.2 Activity

2.2.1 GET /activity/[<id>] IMPLEMENTED

2.2.2 GET /activity?slice=<id> IMPLEMENTED

2.2.3 GET /requests/[<id>] IMPLEMENTED

2.2.4 PUT /requests/<id> IMPLEMENTED

3 Entities

3.1 Authorities

3.1.1 GET /authorities IMPLEMENTED

3.1.2 GET /authorities/<id> IMPLEMENTED

3.1.3 GET /users/authorities IMPLEMENTED

3.1.4 POST /authorities IMPLEMENTED

3.1.5 PUT /authorities/<id> IMPLEMENTED

3.1.6 DELETE /authorities/<id> IMPLEMENTED

3.2 Projects

3.2.1 GET /projects IMPLEMENTED

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 31 of 166

3.2.2 GET /projects/<id> IMPLEMENTED

3.2.3 GET /authorities/projects IMPLEMENTED

3.2.4 GET /authorities/<id>/projects IMPLEMENTED

3.2.5 GET /users/projects IMPLEMENTED

3.2.6 GET /users/<id>/projects IMPLEMENTED

3.2.7 POST /projects IMPLEMENTED

3.2.8 PUT /projects/<id> IMPLEMENTED

3.2.9 DELETE /projects/<id> IMPLEMENTED

3.3 Users

3.3.1 GET /users IMPLEMENTED

3.3.2 GET /users/<id> IMPLEMENTED

3.3.3 GET /authorities/users IMPLEMENTED

3.3.4 GET /authorities/<id>/users IMPLEMENTED

3.3.5 GET /projects/<id>/users IMPLEMENTED

3.3.6 GET /slices/<id>/users IMPLEMENTED

3.3.7 POST /users IMPLEMENTED

3.3.8 PUT /users/<id> IMPLEMENTED

3.3.9 DELETE /users/<id> IMPLEMENTED

3.4 Slices

3.4.1 GET /slices IMPLEMENTED

3.4.2 GET /slices/<id> IMPLEMENTED

3.4.3 GET /slices/<id>/pending IMPLEMENTED

3.4.4 GET /projects/<id>/slices IMPLEMENTED

3.4.5 GET /users/slices IMPLEMENTED

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 32 of 166

3.4.6 GET /users/<id>/slices?expand=true IMPLEMENTED

3.4.7 GET /resources/<id>/slices IMPLEMENTED

3.4.8 POST /slices IMPLEMENTED

3.4.9 PUT /slices/<id> IMPLEMENTED

3.4.10 DELETE /slices/<id> IMPLEMENTED

3.5 Resources

3.5.1 GET /resources[?timestamp_start=<XXX>×tamp_end=<XXX>] IMPLEMENTED

3.5.2 GET /resources/<id> IMPLEMENTED

3.5.3 GET /slices/<id>/resources IMPLEMENTED

3.5.4 GET
/testbeds/<id>/resources[?timestamp_start=<XXX>×tamp_end=<XXX>]

IMPLEMENTED

3.5.5 GET
/testbeds/<id>/leases?timestamp_start=<XXX>×tamp_end=<XXX>

IMPLEMENTED

3.5.6 POST /resources IMPLEMENTED

3.5.7 PUT /resources/<id> IMPLEMENTED

3.5.8 DELETE /resources/<id> IMPLEMENTED

3.6 Leases

3.6.1 GET /leases IMPLEMENTED

3.6.2 GET /leases[?timestamp_start=<XXX>×tamp_end=<XXX>] IMPLEMENTED

3.6.3 GET
/testbeds/<id>/leases[?timestamp_start=<XXX>×tamp_end=<XXX>]

IMPLEMENTED

3.6.4 GET /resources/<id>/leases IMPLEMENTED

3.6.5 POST /leases IMPLEMENTED

3.6.6 PUT /leases/<id> IMPLEMENTED

3.6.7 DELETE /leases/<id> IMPLEMENTED

3.7 Testbeds

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 33 of 166

3.7.1 GET /testbeds IMPLEMENTED

3.7.2 GET /testbeds/<id> IMPLEMENTED

3.7.3 POST /testbeds IMPLEMENTED

3.7.4 PUT /testbeds/<id> IMPLEMENTED

3.7.5 DELETE /testbeds/<id> IMPLEMENTED

3.8 Orchestrator

3.8.1 POST /orchestrator WORK IN PROGRES

2.5 FRONTEND

The activities of Task 3.1 include the integration of the SLA and Reputation Service with the
jFed and MySlice tools of FED4FIRE+. This will be achieved by developing an appropriate
plugin for the federation portal (MySlice) and an extension of jFed GUI and CLI. Although these
developments are scheduled for the third cycle of the project, some early integrations are
already made.

2.5.1 SLA Frontend

As previously mentioned in this document, SLA GUIs have yet to be integrated into MySlice.
The pictures below present current independent SLA GUI.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 34 of 166

Figure 6: GUI to check Agreements status

Figure 7: Agreement Assessment view

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 35 of 166

2.6 FUTURE WORK

At the second cycle, the activities of Task 3.1 will focus on integrating the SLA and Reputation
Service with the rest FED4FIRE+ testbeds. The testbed providers will determine the QoS and
QoE metrics that will be used by the Reputation Engine and the HRS. The testbed providers
will be obliged to provide monitoring data for the agreed QoS KPIs. Partners of Task 3.1 will
provide detailed guidelines on the development of the SLA service and the appropriate
monitoring REST APIs. Our intension is to test and improve the Hybrid Reputation System with
many versatile QOS and QoE KPIs.

Next steps and future work in the SLA component relate to pending developments in order to
completely cover the requirements for this component. Required technical and functional
requirements were defined in D3.01 Requirements and Specifications deliverable. For these,
development statuses in first cycle has been provided in section 1.2.2.1 Requirements
Coverage in First cycle. Next foreseen developments focus on the enabling subscription to
metrics Collection features as well as further elaboration on federated monitoring mechanisms.
At level of GUI, the existing SLA independent GUI will be integrated into MySlice new Graphical
user interface.

2.7 REFERENCES

[1] Gambetta, D. Can we trust trust?, Trust: Making and Breaking Cooperative Relations,
Department of 418 Sociology, University of Oxford, 2000, 213-237.

[2] Kapoukakis, A., Kafetzoglou, S., Androulidakis, G., Papagianni, C. and Papavassiliou, S.,
Reputation-Based Trust in federated testbeds utilizing user experience. In Proc. of IEEE
CAMAD, 2014, pp. 56-60.

[3] Chang, D.Y., Applications of the extent analysis method on fuzzy AHP, European Journal
of operational research, 1996, vol. 95, no. 3, pp.649-655.

[4] Kubler, S., Robert, J., Derigent, W., Voisin, A. and Le Traon, Y., A state-of the-art survey
& testbed of fuzzy AHP (FAHP) applications,” Elsevier Expert Systems with Applications,
2016, vol. 65, pp 398-422.

[5] Patiniotakis, I., Rizou, S., Verginadis, Y. and Mentzas, G., Managing imprecise criteria in
cloud service ranking with a fuzzy multi-criteria decision making method,” in Proc. of
ESOCC, 2013, pp. 34-48.

[6] Garg, S.K., Versteeg, S., and Buyya, R., SMICloud: A Framework for Comparing and
Ranking Cloud Services, In Proc. of IEEE UCC, 2011, pp. 210-218.

[7] Coyle, G., The analytic hierarchy process (AHP), Practical strategy: Structured tools and
techniques, Pearson Education Ltd, Harlow, UK, 2004, pp.1-11.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 36 of 166

3 IMPROVING REPRODUCIBILITY OF EXPERIMENTS –
EXPERIMENT-AS-A-SERVICE

3.1 EXPERIMENT SPECIFICATION

The Experiment Specification (ESpec) was developed as a new standard for setting up
experiments. It combines various existing industry standards and leverages them to make it
easier to fully setup an experiment: from requesting and provisioning the necessary testbed
resources to installing software, doing the configuration management and the application
deployment. This is also documented towards the users at https://jfed.ilabt.imec.be/espec .

In this way, the ESpec can be used as a base for creating “Experiments-as-a-Service”, where
we provide experimenters with fully automated experiments that provide an excellent starting
point for doing their scientific research or education activities.

The functionality of this ESpec can also be leveraged to automate continuous testing of the
Fed4FIRE+ testbed resources, and the software platforms which have been developed on it.
This allows the developers of these platform to detect breaking changes from the moment they
happen, which greatly simplifies debugging and decreases the effort needed to sustain these
platforms.

The Experiment Specification is not a replacement for the Resource Specification (RSpec)
format. Instead, it acts as a bundle (see Figure 8) for an RSpec – which defines the testbed
resources that are needed for the experiment – with additional files for the software deployment
and configuration. For that second part, we use Ansible: a widely used open source software
that automates software provisioning, configuration management and application deployment.
As Ansible connects via SSH to the servers it controls and doesn’t need an “agent” to be
present on these servers, it is a natural fit for controlling Fed4FIRE+ testbed servers.

The ESpec also provides the necessary glue to make Ansible work: it can generate the
necessary configuration files for Ansible, like the inventory-file and an SSH private key for
accessing the other servers, and upload them to the Ansible master-node.

https://jfed.ilabt.imec.be/espec

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 37 of 166

Figure 8: ESpec bundles RSpec, files to be uploaded and scripts

3.2 THE ESPEC BUNDLE

An ESpec bundle is a group of files, which contains:

• experiment-specification.yml which contains the meta data that describes what

to do with the other files

• An RSpec

• Zero, one or more files to upload

• Zero, one or more scripts to execute

There are different ways to “bundle” the files that form an ESpec:

• Place them in a single directory

• Place them in an archive file (.zip, .tar, .tar.gz, .jar, …)

• Place them in a git repo

• Place them in a github repo

Currently jFed supports all these methods. The git and github methods are currently not yet

supported in the Experimenter GUI, but are supported in the automated tester.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 38 of 166

3.2.1 Format of experiment-specification.yml

The ESpec meta data file, experiment-specification.yml uses YAML syntax1, the same

markup language as used by Ansible.

A basic file looks like this:

version: 1.0-basic
rspec: nodes.rspec
upload: exp-data-files.tar.gz
execute: exp-script.sh

Version should for now always be “1.0-basic”. Future versions will use another identifier.

Note that execute will first act as an upload, and then also execute the uploaded file.

Both upload and execute allow multiple files to be specified. Use a list for that. Example:

version: 1.0-basic
rspec: nodes.rspec
upload:
 - exp-files-set1.tar.gz
 - exp-files-set2.zip
execute:
 - setup.sh
 - exp-run.sh

Files are uploaded in parallel, but scripts are always executed in order. So in this case, exp-
run.sh will not run before setup.sh has run.

Each time a filename is specified, it is assumed it refers to a bundled file. You can also directly
specify the content of the file, or provide an URL to download it from. To do that, the “long”
format is used. This also allows extra options such as to which node, and in which path to
upload the file.

An example:

version: 1.0-basic

1 http://yaml.org/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 39 of 166

rspec:
 - bundled: 3-nodes.rspec
upload:
 - exp-files-set1.tar.gz
 - bundled: exp-files-set2.tar.gz
 path: /tmp
 nodes: [central, exp1]
 - download: http://example.com/exp-files-set3.tar.gz
 - direct: |
 You can also directly specify the content of a file. This text
will thus be stored on all nodes in /tmp/demo.txt
 Check the yaml syntax of "literal-blocks" for details about syntax
and removing indentation
 path: /tmp/demo.txt
execute:
 - bundled: setup-central-node.sh
 nodes: central
 - bundled: setup-exp-node.sh
 nodes: [exp1, exp2]
 - local: /work/repo/start-exp.sh
 nodes: [exp1, exp2]

If no path is specified, the home dir of the user is used. This default can be changed by using
dir. dir will also create the directories if needed. While this feature can be convenient, keep in

mind that permissions of the logged in user are used. So directory creation is typically not
allowed everywhere.

You can specify the destination dirs for uploads and scripts (where files in execute are placed)
separately. If scripts is not specified, it defaults to the same dir as uploads. If uploads is not

specified, it defaults to the users home dir.

Paths may start with ~ to indicate they are relative to the users home dir.

An example:

version: 1.0-basic
rspec:
 - bundled: example.rspec
dir:
 - path: /tmp/data/
 content: uploads
 - path: ~/scripts/
 content: scripts
 - path: /tmp/extra/
upload:
 - exp-files-set1.tar.gz
 - exp-files-set2.tar.gz

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 40 of 166

 - bundled: extra.tgz
 path: /tmp/extra/
execute:
 - setup.sh
 - start.sh

In this example, if the users home dir is at /home/someuser/ the files will be places in:

• /tmp/extra/extra.tgz

• /tmp/data/exp-files-set1.tar.gz

• /tmp/data/exp-files-set2.tar.gz

• /home/someuser/scripts/setup.sh

• /home/someuser/scripts/start.sh

3.2.2 Dir details

Each dir entry supports the following options:

• path (string) MANDATORY

• content (string)

• permissions (string)

• nodes (empty, string, or list of string)

• sudo (boolean)

path specifies the path of the directory used in the ExperimentSpecification. This needs to be

an absolute path, or a path relative to the user homedir. Thus, it needs to start with either / or ~.

Non-existing directories will be created (including parent directories). Existing directories will
be left as is (unless their permissions are wrong, see later).

content is either upload, scripts or ansible, or left unspecified. If specified, files in the

referenced sections, for which no path or a relative path is given, will be stored in (or relative
to) this dir. If content is unspecified, the dir will just be created if it doesn’t exist, which is often
useful on its own.

permissions are the required permissions for the directory. If not specified, a default value
of u=rwx is used. The formats supported by chmod are supported, so octal notation (0600) and

symbolic notation (uog=rwx).

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 41 of 166

nodes is a list empty or unspecified, or one or more nodes on which the dir is created and used

as specified in content. If empty, all nodes are used (except for the ansible control machine).

sudo if not specified, this option is false. If true, the directory will be created by using sudo to

gain root privileges. This can be required to create certain directories. Of course, this requires
the nodes to have a correctly configured sudo command.

3.2.3 File content details

Both upload and execute need a list with zero, one or more objects that specify what to do.

In both cases, these objects contain at least information on the content of the file that is worked
with.

To specify file content, the object contains a specific key-value pair. The key determines the
method to retrieve the file content, the value depends on the key but typically specifies which
specific content to fetch using the method specified in the key. The value is typically a string,
but can be an object for certain keys, if they require additional data.

There are different ways to specify which file content to use:

• bundled: The file is bundled in the ESpec bundle. The value is the name of the bundles

file, possibly including the relative path inside the ESpec bundle. You can also specify
a directory from the bundle.

• download: The file must be downloaded. The value is the URL of the file.

• git or github: The file (or dir) is in a git repository. There is currently no difference

between specifying git or github. The value is a string with the git URL of
the public repo. It is also possible to specify more options, using an object as value
instead. The following fields are then supported:

o url: The git URL of the repo. May be an HTTP or SSH git url. (mandatory)

o branch: The branch of the repository to use. (optional, default is “master”)

o dir: The subdir in the repo to use. If file is specified, this is the base dir of the

file. (optional)

o file: The file to fetch from the git repo. If this is not specified, an entire dir, or

the entire repo is used. (optional)

o username: The username used for basic authentication. (optional, may not be

combined with privateKey)

o password: The password matching the username used for basic authentication.

(mandatory if username is specified, forbidden otherwise.)

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 42 of 166

o privateKey: The private key (in PEM format) needed to access this git repo.

Note that the username is specified in the git URL in this case. (optional, may
not be combined with username or password)

• meta: The file is generated by the client and contains meta data about the

experiment/slice. The value is the required meta data. There is currently 1 supported
value, which is the name of the metafile which must be generated and uploaded:

o manifest.xml: The manifest RSpec of the slice. If there are multiple AM’s

involved in this slice then this is the combination of all of their manifest RSpecs.

o experiment-info.json: Information about the experiment in JSON format.

This includes info on the user, project, slice, ssh users, and on the nodes.

o client_id.txt: The client_id of the node.

• generated: The file must be generated by the client. The value is an object or string.

The object should always contain a method field. The string is shorthand for an object
with only the method field, with as value the string. There are currently 3 supported
methods:

o keypair: This method requires no extra fields. It will generate a random

keypair, pass that keypair in the Provision phase, and upload the keypair. This
way, all nodes in the experiment can afterwards securely communicate over
SSH.

o random: Generate a file with random content. There are 2 extra fields

needed: format and length.

▪ format: Specifies which form the random data has. Options

are: password, binary, base64 and alphanum

▪ length: The length in bytes of the generated random data. Note that

for base64 this is the length of the encoded bytes, not the length of the
resulting base64 string.

o rspec: Generate an RSpec file. There are 1 extra fields needed: am, and there

are some optional fields nodes, prefix and icon.

▪ am: The component_manager_id of the nodes in the RSpec. You may

specify either the URN, the server ID (an integer), or the testbed ID (a
string).

▪ nodes: Either the amount of nodes that need to be generated (an

integer), or a list of names for the nodes (a list of strings). Default is 1 (=
generate 1 node).

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 43 of 166

▪ prefix: The prefix used to generate node names, if the nodes option is

an integer. The default is “n”. (example: For nodes: 2 this would cause
2 nodes to be generated, with names “n1” and “n2”.)

▪ icon: The “icon” in the jFed Experimenter GUI to use. If not specified,

an icon will be chosen automatically (which is almost always what you
need). The name of this icon is the ResourceClass ID that can be found
in the fls-api. Examples are: physical-node, wireless, generic-node, vm-
xen, vm-openvz, vm, lte, docker-container. For the full list, check the API
on https://flsmonitor-api.fed4fire.eu/resourceclass .

An example with generated content:

version: 1.0-basic
rspec:
 generated:
 method: rspec
 am: iminds-docker
 nodes:
 - client
 - server
upload:
 - generated: keypair
 - generated:
 method: random
 format: password
 length: 20
 path: random-password.txt
 - generated:
 method: random
 format: binary
 length: 500
 path: /tmp/seed-data.dat
 - git: user@git.example.com:/example-experiment/my-experiment.git
 path: ~/my-exp-repo/
execute:
 - direct: |
 #!/bin/bash -xe

 ~/my-exp-repo/prepare-experiment.sh --set-password ~/random-
password.txt

 ~/my-exp-repo/run-experiment.sh --password ~/random-password.txt --
seedfile /tmp/seed-data.dat

 echo 'All done'

https://flsmonitor-api.fed4fire.eu/resourceclass

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 44 of 166

For execute, playbook and galaxy, it is allowed not to specify a file content source, but to

only specify a path.

In this case, it is assumed the file already exists on the remote node’s filesystem at the given
path. The file is thus not uploaded to the node, but is already present somehow. Note that is
up to you to make sure the file exists. If you want, the file can have different content on each
node it is used on.

There are multiple reasons why a file would already be present: it can be included in the
diskimage the nodes runs, it can be installed using the install service of the RSpec, or a
previous upload or execute step in the Experiment Specification can have created it (directly
or indirectly).

An (contrived) example:

version: 1.0-basic
rspec: experiment.rspec
upload:
 - bundled: check.sh
 permission: u=rx
execute:
 - path: check.sh
 - path: /usr/bin/sync
ansible:
 host:
 upload:
 - bundled: hello-world-ansible.yml
 playbook:
 - path: hello-world-ansible.yml

An example with various git file sources (see this entire example
at https://github.com/wvdemeer/espec-test):

version: 1.0-basic
rspec: docker.rspec

upload:
 # Fetch and upload a single file from a github repo
 - git:
 url: git@github.com:wvdemeer/espec-test.git
 branch: master
 file: hello3.txt
 # Fetch and upload a file from a subdir of a github repo
 - github:
 url: git@github.com:wvdemeer/espec-test.git
 dir: hello4

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 45 of 166

 branch: master
 file: hello4.txt
 # Fetch and upload an entire subdir from a github repo
 - git:
 url: git@github.com:wvdemeer/espec-test.git
 dir: hello56
 branch: master
 - hello78
 - hello9.txt

ansible:
 host:
 type: EXISTING
 name: ansible
 upload: hello2.txt
 playbook: hello-playbook.yml

3.2.4 Upload details

Each upload entry supports the following options:

• a content source (MANDATORY)

• path (string)

• permissions (string)

• nodes (empty, string, or list of string)

path specifies the path on the remote of the file to be uploaded. If no path is specified, the file
is uploaded to the upload dir from the dir section. Relative paths are relative to the upload

directory from the dir section.

permissions are the required permissions for the uploaded file. If not specified, a default value

of u=r is used. The supported format is the same as for dir.

nodes is as for dir and specifies the nodes to which the file needs to be uploaded.

Note that for uploading a file, the permissions of the target directory must allow write access
to the login user.

3.2.5 Execute details

Each execute entry contains the following options:

• a content source

• path (string)

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 46 of 166

• pwd (string)

• permissions (string)

• sudo (string)

• log (string)

• nodes (string)

path is as with upload, but by default the script dir is used.

permissions is as with execute, but the default permissions are u=rx.

nodes is as with execute.

pwd follows the same rules as path, but specifies the working dir in which the script needs to

be executed.

sudo if not specified, this option is false. If true, the script will be executed using sudo to gain

root privileges. Of course, this requires the nodes to have a correctly
configured sudo command.

log follows the same rules as path, but specifies where the log file should be written. By

default, the same path and base filename as the script will be used, with the extension replaced
by ‘.log’.

• Global configuration Options

There are a few global config options that change the default behavior.

This example shows how to set the config options, and shows the default values (i.e. not
providing a config section results in the values in this example being set).

version: 1.0-basic
rspec: experiment.rspec
config:
 default_sudo: false # use sudo when not specified?
 sudo_user: ~ # null, so no sudo user passed,
which sudo iterprets as root
 default_store_remote_logs: true # when not overridden, store logs at
the node executing a command?
 default_store_local_logs: true # when not overridden, download logs
to local client running the ESpec?
 all_nodes_includes_ansible: false # when uploading or executing on all
nodes, include the ansible node?
execute: test.sh

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 47 of 166

3.2.6 Ansible Support

The Experiment Specification has support for Ansible2.

Ansible runs on a control machine, which can be:

• The local machine (not yet supported by jFed)

• An existing node in your request RSpec

• And extra node added to your request RSpec

When no preference is specified, a extra node will be added to the request RSpec.

As with dir, upload and execute, a lot of defaults are implied, and if they are used, the syntax

can be greatly simplified.

An minimal example experiment-specification file is:

version: 1.0-basic
rspec: experiment.rspec
ansible: hello-world-ansible.yml

In this example:

• An extra ansible node is added to the RSpec

• Ansible is installed on that node

• The ansible inventory file (and related files) are generated and put on the node

• The specified (bundled) playbook is copied to the node

• ansible-playbook is called to execute the playbook

Off course, one can specify multiple playbooks to execute, and ansible options. The following
example is equivalent, but specifies the playbook as a single item in a list.

version: 1.0-basic
rspec: experiment.rspec

2 http://www.ansible.com

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 48 of 166

ansible:
 - hello-world-ansible.yml

The 2 previous examples are short for the full syntax:

version: 1.0-basic
rspec: experiment.rspec
ansible:
 playbook: hello-world-ansible.yml

Or as a list:

version: 1.0-basic
rspec: experiment.rspec
ansible:
 playbook:
 - hello-world-ansible.yml

When all implied defaults are explicitly specified, the same example becomes:

version: 1.0-basic
rspec: experiment.rspec
dir:
 - path: ~/ansible/
 content: ansible
ansible:
 host:
 type: ADD
 name: ansible
 galaxy-command: ansible-galaxy
 playbook-command: ansible-playbook
 upload:
 - generated: keypair
 execute:
 - download: https://raw.githubusercontent.com/imec-
ilabt/ansible-init-script/master/install-ansible.sh
 galaxy: ~
 playbook:
 - bundled: hello-world-ansible.yml
 debug: 0
 extra-vars: ~
 extra-vars-from: ~
 log: playbook-exec-hello-world-ansible.log

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 49 of 166

This form explicitly shows most of what adding ansible does. The only thing that is not visible
here, is that the ansible inventory file and related files are copied to the ansible dir
(~/ansible/ by default).

Not that you can add any upload and execute steps to the ansible host. Rules to take into
account when doing so are:

• The keypair will always be uploaded, even if you do not specify it.

• The default automatic ansible install script will NOT be used if you specify any custom
execute step.

• When no path is specified, the files are copied to the ansible dir (~/ansible/ by

default).

The typical use of these upload and execute steps are to copy files needed by the ansible
playbooks, and to install ansible on the node.

The ansible host type, can have 3 values:

• ADD: A node with the name specified in the name field will be added to the RSpec and

used as ansible control machine.

• EXISTING: A node already present in the RSpec, whose name matches the name field,

will be used as ansible control machine.

• LOCAL: The local host will be used as ansible control machine. The name field should

not be specified, and the execute and upload steps are not allowed. (not yet supported
by jFed)

Some things will not run on the ansible control machine:

• The ansible control machine is the only node that will perform
the upload and execute steps specified inside ansible. The nodes list of these steps is
ignored and should not be specified.

• The global upload and execute steps that should run on all nodes (no nodes field
specified) will NOT run on the ansible control machine. Only if the ansible control
machine is explicitly mentioned in a node list, it will be included.

The playbook options allows specifying one or more playbooks. Each of these requires a
source, but also allows additional option: debug, extra-vars and extra-vars-from:

• The debug option for ansible playbooks is used to determine the number of “v”

arguments added to the ansible command. Ansible adds extra debug info for each “v”

argument. You can add 0, 1, 2 or 3 “v” arguments.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 50 of 166

• The extra-vars options takes either a string, or a submap. In the case a string is

given, this is passed directly to the ansible-playbook --extra-vars option. A map is
converted to json and sotred to a file, that is passed using the same option, but with
the “@file” syntax: --extra-vars '@filename'

• The extra-vars-from option also uses the “@file” syntax but allows any source.

An example for the extra-vars options:

playbook:
 - bundled: hello-world1-ansible.yml
 extra-vars: myvar=hello myothervar=hello2
 - bundled: hello-world2-ansible.yml
 extra-vars:
 myvar: hello
 myothervar: hello2
 - bundled: hello-world3-ansible.yml
 extra-vars-from: extraVars.json
 - bundled: hello-world4-ansible.yml
 extra-vars-from:
 download: http://example.com/my_extra_vars.yml

The galaxy option is similar to the playbook option, but will run before the playbook option,

and will call ansible-galaxy to install the requested ansible requirement files. This is used to

install ansible modules that add extra features to ansible. In the example above,
the galaxy option is null, and thus empty. It expects a list of files like execute and playbook.

The group options allows specifying a list of groups for the ansible inventory file (sometimes
called “ansible hosts file”), and the client IDs of the nodes that belong to them. If a group is
defined in both the RSpec and the ESpec, the ESpec overrides the group. Otherwise, both
sets of groups are added.

A more complex ansible example, with many defaults overridden:

version: 1.0-basic
rspec: my-experiment.rspec
dir:
 - path: /work/ansible/
 content: ansible
ansible:
 host:
 type: EXISTING
 name: control
 galaxy-command: /usr/local/bin/ansible-galaxy
 playbook-command: /usr/local/bin/ansible-playbook
 execute:

http://docs.ansible.com/ansible/latest/playbooks_variables.html#passing-variables-on-the-command-line

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 51 of 166

 - my-custom-ansible-install.sh
 galaxy:
 - download: http://example.com/ansible-requirements.yml
 - my-ansible-requirements.yml
 playbook:
 - bundled: setup-software.yml
 debug: 2
 - run-1st-experiment.yml
 - run-2nd-experiment.yml
 group:
 servers:
 - server1
 - server2
 clients:
 - client1
 - client2

3.3 USING AN ESPEC IN JFED

The jFed Experiment GUI supports executing ESpecs and gives the experimenter feedback
on the actions which are being performed.

Besides the Experimenter GUI, support has also been implemented in the jFed Automated
tester, which is used by the Fed4FIRE+ federation monitor. Both
the GuiLogicTest and ESpecTest include ESpec support. This allows the Federation Monitor

to do extensive tests, in which

3.3.1 Using an ESpec in the jFed Experimenter GUI

To start an ESpec, the Experimenter clicks the ‘Open Espec’ button in the ‘General’ ribbon-tab
of the jFed Experimenter GUI:

Figure 9: The 'Open Espec' button

This opens a dialog in which the experimenter can specify the location of the ESpec.
Depending on the source type, different configuration fields are shown:

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 52 of 166

Figure 10: Opening an ESpec from a local archive file

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 53 of 166

Figure 11: Opening an ESpec from a local directory

Figure 12: Opening an ESpec from an external archive

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 54 of 166

Figure 13: Opening an ESpec from a Git(Hub) repository

After specifying a valid source for the ESpec, the experimenter needs to enter a name for the
experiment and select the project in which the experiment can be run:

Figure 14: Experiment Start dialog

The jFed Experimenter GUI will expose an extra ‘ESpec’-tab which shows the current status
of the Experiment Specification.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 55 of 166

Figure 15: Experiment Specification status, waiting for the testbed resources in this experiment

Figure 16: Experiment Specification status, executing a script

Some steps can be clicked on to expose even more detailed information:

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 56 of 166

Figure 17: Output of the script being executed

Where applicable, there is also a context menu available for a step (reachable by right-clicking
on it), which allows the step and all steps before or after to be re-executed. This feature is very
useful when creating and debugging an ESpec specification.

Figure 18: Context menu of a 'step' in the Experiment Specification execution

The overall progress of the Experiment Specification execution can be followed in the
progress-buttons shown in the top of the tab. A button with gray text signifies a step which
hasn’t been executed yet. A button with bold blue text is a currently active step, and a button
with green text has been successfully executed.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 57 of 166

Figure 19: A successfully executed Experiment Specification

3.3.2 ESpec usage in the Federation Monitor

The ESpec is also used in the federation monitor3, where it greatly improves the testing
capabilities of software deployments. It allows for the complete testing of complex software
frameworks, as long as they can be deployed with Ansible.

Previously, the most extensive tests in the federation monitor were the ‘Login test’. This test
would execute the full lifecycle of an experiment: create a new slice, list the available resources
of a testbed, allocate and provision one of these resources, wait for the resources to become
‘ready’, login on the resources with SSH and do a simple functionality test (eg. a few simple
Linux shell-commands) and finally releasing the testbed resource.

3 https://fedmon.fed4fire.eu

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 58 of 166

Figure 20: Lifecycle steps of a 'Login test'

The ESpec tests extend this scenario in a few ways. All these extensions can be defined in a
‘Federation Monitor Test Definition’, which is a JSON-based definition file.

3.3.2.1 ESpec support in the Fed4FIRE+ Federation Monitor test definitions

Firstly, it is now possible to dynamically specify which testbed resources must be provisioned
for the test. The code sample below defines a single testbed-resource where the hardware-
type in the Advertisement RSpec is ‘NUC2014’ and where the component-id conforms to the

regex’es “nuc0-[0-9]{2}”, “nuc10-10”, “nuc10-11”; and which needs to be provisioned with

the disk-image with ID ‘urn:publicid:IDN+wilab1.ilabt.iminds.be+image+emulab-
ops:UBUNTU16-64-wilab’, and in the ansible-group ‘sensor’

 "requestRSpec": {
 "config": {
 "nodes": [
 {
 "count": 1,
 "diskImage":
"urn:publicid:IDN+wilab1.ilabt.iminds.be+image+emulab-ops:UBUNTU16-64-
wilab",
 "exclusive": true,
 "sliverType": "raw-pc",

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 59 of 166

 "ansibleGroup": "sensor",
 "clientIdBase": "sensor",
 "availableFilter": true,
 "hardwareTypeFilter": [
 "NUC2014"
],
 "componentIdSelector": "random",
 "componentNameAllowRegex": [
 "nuc0-[0-9]{2}",
 "nuc10-10",
 "nuc10-11"
],
 "componentNameDenyThenAllow": false
 },
 ...
]
 ...
 }

Secondly, it allows to define where the ESpec must be loaded from. The code sample belows
defines an ESpec which must be loaded from the branch ‘fedmon’ from a specific git-repository:

 "eSpec": {
 "source": "PROVIDE_GIT_REPO_DIR",
 "providedContentSource": "git
git@gitlab.ilabt.imec.be:twalcarius/finterop-sdk.git / fedmon"
 },

And lastly, it also supports an additional Ansible playbook to be defined which can be used to
test if the deployment of the software stack with the ESpec was successful. To allow the test
results to be interpreted automatically, the federation monitor supports extracting text and/or
JSON-fragments from the output of this Ansible-playbook, and saving this alongside the test
results. This allows for a far more granular result than just looking to the exit status of the
ansible-playbook command.

The code fragment below shows the definition of such an Ansible-test, where the output
between delimiters ‘====coapthon-cli-vs-californium-server====’ is parsed as a JSON

and saved with the testresults.

 "ansibleTests": [
 {
 "debug": false,
 "enabled": true,

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 60 of 166

 "extract": [
 {
 "name": "coapthon-cli-vs-californium-server",
 "type": "JSON",
 "delim": "====coapthon-cli-vs-californium-server====",
 "scope": "TESTINSTANCE"
 },
 ...
],
 "playbookExe": "/usr/bin/ansible-playbook",
 "playbookUrl": "git
git@gitlab.ilabt.imec.be:twalcarius/finterop-sdk.git / fedmon",
 "failureRegex": "(failed=[^0]|unreachable=[^0])",
 "timeoutInSec": 2400,
 "playbookFileNameInArchive": " tests/test.yml"
 }
],

A full ‘Federation Monitor Test Definition’ using an ESpec looks as follows:

{
 "id": 1413,
 "name": "F-Interop IoT tests",
 "testDefinition": "https://flsmonitor-
api.fed4fire.eu/testdefinition/nodelogin2long",
 "testVersion": "long",
 "enabled": true,
 "frequency": "https://flsmonitor-api.fed4fire.eu/frequency/22",
 "parameters": {
 "method_required_for_success": "ansible",
 "server": "https://flsmonitor-api.fed4fire.eu/server/484",
 "user": "https://flsmonitor-api.fed4fire.eu/user/ftester",
 "automated_tester_config": {
 "resources": [
 {
 "eSpec": {
 "source": "PROVIDE_GIT_REPO_DIR",
 "providedContentSource": "git
git@gitlab.ilabt.imec.be:twalcarius/finterop-sdk.git / fedmon"
 },
 "slice": {
 "expireTimeMin": 200
 },
 "requestRSpec": {
 "config": {

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 61 of 166

 "nodes": [
 {
 "count": 1,
 "serverId": 311,
 "diskImage":
"urn:publicid:IDN+wall2.ilabt.iminds.be+image+emulab-ops:UBUNTU16-64-STD",
 "exclusive": true,
 "sliverType": "raw-pc",
 "ansibleGroup": "server",
 "clientIdBase": "server",
 "availableFilter": true,
 "componentIdSelector": "noassign"
 },
 {
 "count": 1,
 "serverId": 311,
 "diskImage":
"urn:publicid:IDN+wall2.ilabt.iminds.be+image+emulab-ops:UBUNTU16-64-STD",
 "exclusive": true,
 "sliverType": "raw-pc",
 "ansibleGroup": "ansible",
 "clientIdBase": "ansible",
 "availableFilter": true,
 "componentIdSelector": "noassign"
 },
 {
 "count": 1,
 "diskImage":
"urn:publicid:IDN+wilab1.ilabt.iminds.be+image+emulab-ops:UBUNTU16-64-
wilab",
 "exclusive": true,
 "sliverType": "raw-pc",
 "ansibleGroup": "sensor",
 "clientIdBase": "sensor",
 "availableFilter": true,
 "hardwareTypeFilter": [
 "NUC2014"
],
 "componentIdSelector": "random",
 "componentNameAllowRegex": [
 "nuc0-[0-9]{2}",
 "nuc10-10",
 "nuc10-11"
],
 "componentNameDenyThenAllow": false
 }
]
 },

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 62 of 166

 "source": "GENERATE_USING_ADVERTISEMENT"
 },
 "waitForReady": {
 "maxTimeMin": 100
 },
 "overrideESpecRSpec": true
 }
],
 "ansibleTests": [
 {
 "debug": false,
 "enabled": true,
 "extract": [
 {
 "name": "coapthon-cli-vs-californium-server",
 "type": "JSON",
 "delim": "====coapthon-cli-vs-californium-server====",
 "scope": "TESTINSTANCE"
 },
 {
 "name": "californium-cli-vs-californium-server",
 "type": "JSON",
 "delim": "====californium-cli-vs-californium-server====",
 "scope": "TESTINSTANCE"
 },
 {
 "name": "californium-cli-vs-coapthon-server",
 "type": "JSON",
 "delim": "====californium-cli-vs-coapthon-server====",
 "scope": "TESTINSTANCE"
 },
 {
 "name": "coapthon-cli-vs-coapthon-server",
 "type": "JSON",
 "delim": "====coapthon-cli-vs-coapthon-server====",
 "scope": "TESTINSTANCE"
 },
 {
 "name": "californium-cli-vs-contiki-server",
 "type": "JSON",
 "delim": "====californium-cli-vs-contiki-server====",
 "scope": "TESTINSTANCE"
 },
 {
 "name": "californium-cli-vs-contiki-ng-server",
 "type": "JSON",
 "delim": "====californium-cli-vs-contiki-ng-server====",
 "scope": "TESTINSTANCE"

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 63 of 166

 }
],
 "playbookExe": "/usr/bin/ansible-playbook",
 "playbookUrl": "git
git@gitlab.ilabt.imec.be:twalcarius/finterop-sdk.git / fedmon",
 "failureRegex": "(failed=[^0]|unreachable=[^0])",
 "timeoutInSec": 2400,
 "playbookFileNameInArchive": " tests/test.yml"
 }
],
 "nodeLoginTest": {
 "enabled": true
 }
 }
 },
 "selfTestImmune": false,
 "@id": "https://flsmonitor-api.fed4fire.eu/testinstance/1413",
 "@type": "TestInstance"
}

3.3.2.2 Execution of Federation monitor tests with ESpecs

The results of a test execution with the extensions described above contains some extra
information.

Firstly, it details which nodes were selected dynamically:

rspec-request-fixed-nodes: [
"urn:publicid:IDN+wilab1.ilabt.iminds.be+node+nuc10-11"

],

Secondly, the extracted info from the Ansible test-output is also merged into the test result.

When the output of the Ansible playbook contains something like:

[fulltest.ui_stub]:====coapthon-cli-vs-californium-server==== {\n
\"testname\": \"coapthon-cli-vs-californium-server\",\n
\"_api_version\": \"1.1.0\",\n \"tc_results\": [\n {\n
\"description\": \"No interoperability error was detected,\",\n
\"testcase_id\": \"TD_COAP_CORE_01\",\n \"verdict\":
\"pass\",\n \"partial_verdicts\": [\n [\n
\"TD_COAP_CORE_01_step_02\",\n null,\n
\"CHECK step: postponed\",\n \"\"\n],\n
[\n \"TD_COAP_CORE_01_step_03\",\n

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 64 of 166

null,\n \"CHECK step: postponed\",\n
\"\"\n],\n [\n
...
====coapthon-cli-vs-californium-server====

Then the content between the two delimiters will have been parsed as JSON, and be available
in the test result as follows:

extract: {
coapthon-cli-vs-californium-server: {

testname: "coapthon-cli-vs-californium-server",
tc_results: [
{

verdict: "pass",
description: "No interoperability error was detected,",
testcase_id: "TD_COAP_CORE_01",
...

 }
 ...
 }
 ...
}

3.3.2.3 Visualization of extracted test results in the Federation Monitor

The test steps of an ESpec test in the Federation Monitor are structured differently from a login
test. This is because the implementation used by an ESpec test is the same as the one used
in the jFed Experimenter GUI.

The step ‘runExperiment’ bundles:

- The allocation and provisining of the resources;
- Waiting for these resources to become ‘ready’;
- Executing the execute, upload and ansible-steps defined in the

experiment-definition.yml

The step ‘ansible’ runs the Ansible test-playbook to verify the setup.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 65 of 166

Figure 21: Lifecycle steps of an ESpec test

The Federation monitor makes the output of all Ansible playbook executions directly available
via tabs on the detailed result-page on the website. This allows for easy verification and
debugging of the test results.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 66 of 166

Figure 22: Output from an 'ansible'-command in an ESpec

Figure 23: Output from the Ansible test-playbook

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 67 of 166

Where useful, the Federation monitor website also interprets the extracted information from
the Ansible test-playbook, and displays this in a concise manner. In the example below the
test results of an test of the F-Interop project have been visualised for easy interpretation.

Figure 24: Visualisation of the information extracted from an Ansible test-playbook

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 68 of 166

4 REPRODUCIBILITY THROUGH CONTINUOUS HARDWARE
VERIFICATION

When using testbeds in the context of experimental computer science, the ability to produce
trustworthy and reproducible experiments results depends greatly on the trustworthiness of the
infrastructure itself. Unfortunately, several factors many issues such as software
misconfiguration, hardware heterogeneity, or service failures, can remain undetected and
affect the quality of experimental results. This section presents the design and implementation
of an automated testbed testing framework. This framework was deployed in the context of the
Grid’5000 project, and uncovered more than one hundred of issues.

4.1 INTRODUCTION

Reproducibility has been the focus of a lot of interest over the recent years, in science in
general, and in computer science specifically. But most of this focus has been targeted at the
reproducibility of data analysis, which is usually handled by a pipeline [1] of several steps

involving various tools, starting from measured data and going up to figures and tables included

in an article. The various steps of that pipeline involve code for pre-processing the measured
data, data analysis, and data presentation. However, this focus on reproducibility of data analysis
ignores the important question of how measured data is produced.

Experimental computer science generally involves two main methods to acquire data about
systems under test: simulation, and experimentation on testbeds. Experimenting on a testbed is

a challenging task, and usually involves many different tools: the testbed itself, of course, but
also experiment orchestration solutions [2] ranging from shell scripts to complex frameworks,
load or failure injectors, emulation solutions, measurement tools, etc. Each of those
components has a huge impact on the experiment and the results that will be obtained from it.
In theory, experimenters should include a qualification and calibration phase in their
experiments, and confirm that this whole stack meets its specification. But unfortunately this is
very rarely done in practice, probably due to lack of time or adequate tools.

Still, assessing the correctness of software, e.g. with software testing techniques, is a relatively
well-understood process [3]. But the bottom layer of the stack, that is, the testbed itself, raises
specific challenges: testing infrastructure is an entirely different story. The complex mix of
software and hardware, deployed at scale, provides potential for many difficult-to-detect
issues, such as hardware misconfigurations or failures, or software bugs that happen randomly
or only at scale.

This section describes work that was carried out in the context of the Grid’5000 testbed in order
to systematically test the infrastructure and its services, with the goal of increasing the reliability
and the trustworthiness of the testbed by uncovering problems that would otherwise harm the
repeatability and the reproducibility of experiments.

The section is structured as follows. Section 4.2 provides the necessary context about the
Grid’5000 testbed. Section 4.3 details motivations for this work, and specific challenges that
were encountered. Then, Section 4.4 describes the solution that was implemented, before

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 69 of 166

some results are discussed in Section 4.5. Finally, related work is presented in Section 4.6
before the section is concluded in Section 4.6.

4.2 CONTEXT: THE GRID’5000 TESTBED

This section provides some background information about the Grid’5000 testbed, and about
the way it is being operated, in order to support the design choices explained later.

The Grid’5000 project was initiated in 2003 with the goal to provide a testbed to experiment on
Grid computing. The focus later moved to become a versatile testbed serving other areas of
distributed computing (P2P, HPC, Cloud, Big Data, networking). The testbed itself was open
to users in 2005. Each year, the testbed sees about 550 active users (users making at least
one resource reservation) that produce about 100 publications.

Grid’5000 is currently composed of 8 sites (Figure 25) located in France and in Luxembourg.
Each Grid’5000 site is composed of one or more sets of homogeneous machines called
clusters. All machines from the same cluster are usually bought at the same time. At the time of

writing, Grid’5000 has a total of 32 clusters, composed of a total of 894 nodes. At the
networking level, all sites are interconnected with a dedicated 10 Gbps backbone network.

Some specific hardware is also available on Grid’5000: various generations of HPC networks
(mostly Infiniband), of GPUs, and Xeon Phi co-processors.

 Figure 25:Grid’5000 sites and interconnection network

The main Grid’5000 features and services are:

• Resources description and discovery: a REST API (called the Reference API) provides

detailed information about all resources in the testbed. Each time a node boots, its

description is verified by a tool called g5kchecks that collects information using various

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 70 of 166

inventory tools [4], to ensure that the Reference API contains correct and up-to-date

information.

• Resources reservation: a resource manager (OAR [5]) is used by users to reserve resources

for a specified duration. A rather complex Usage Policy4 ensures fair sharing of resources

between users during the day, while large reservations (generally made in advance) can

use all resources at night and during weekends.

• Nodes reconfiguration: the testbed provides a default (called standard) environment where

users do not have root access, similarly to what is available on traditional HPC clusters.

On top of that, bare-metal deployment using Kadeploy [6] provides users with the ability to

run custom operating system images and get root access. The Grid’5000 team provides a

number of images (called reference environments), and users can also create custom

environments. Out-of-band consoles to nodes are also available to users.

• Network reconfiguration: the KaVLAN tool provides the ability to reconfigure the network.

Each node’s network interface (and nodes have up to four network interfaces) can be put

in a different VLAN, which are reserved using OAR. This is typically used for cloud

experiments [7] or networking experiments. Additionally, those VLANs can also be

propagated inside the backbone links, providing isolation for multi-site experiments.

• Network and power monitoring: the Kwapi tool [8] provides an API, a live visualization

interface and an archive of measurements of network traffic and power consumption of all

nodes of the testbed, captured at high frequency.

While the testbed is distributed, the Grid’5000 engineers work as a single team that manages
all sites in a single administrative domain. Each site is still assigned to a specific engineer
(mainly in order to build knowledge about local specificities, and to perform maintenance in
machine rooms), but the configuration of services is managed centrally, through the use of a
configuration management system (Puppet).

4.3 MOTIVATIONS

4.3.1 Very few bugs are reported

Reporting bugs or asking technical questions correctly is a difficult process [9], [10]. Typical
users of testbeds (PhD students or post-doctoral students) rarely have that skill, or lack the
confidence to report a bug about an infrastructure that they do not fully understand. In the
context of Grid’5000, the fact that the team is geographically distributed also makes it hard to
talk to a local contact that could confirm the problem informally. As a result, we receive very
few bugs from users, despite, as we will show later, a large number of issues that could and
should be reported.

Testbed operators would be in a good position to find and report such issues, as they clearly
have the expertise about how the testbed should behave. But they often have limited

4 https://www.grid5000.fr/w/Grid5000:UsagePolicy

https://www.grid5000.fr/w/Grid5000:UsagePolicy

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 71 of 166

experience of using the testbed, especially of the large variety of services that are offered to

users, and as a result they are unlikely to face all the problems that users encounter.

4.3.2 But many bugs should be reported

Testbeds such as Grid’5000 can produce a large number of different and interesting issues.

A first obvious factor is its scale: 8 sites, 32 clusters and 894 nodes provide plenty of potential
for subtle problems. Also, while methods to standardize software configuration at scale are
reasonably well understood (e.g. configuration management), hardware is much more difficult
to deal with: its configuration sometimes requires manual steps (inside BIOS for example), it
tends to fail much more randomly than software (for example, due to aging), and exhibits silent
and subtle failure patterns (as a real example: vibrations causing screws attaching hard disk
drives to become loose, causing additional vibrations, that can have a performance impact
[11]).

Another, less obvious factor is the software stack and the ecosystem of services deployed on
the testbed. Some core services are heavily used, but next to them, testbeds are always trying
to design new services to address new experimentation needs. When they are first made
available to the public, they rarely immediately pick up a strong user base, able to detect issues
as soon as they occur. As a result, it is not unusual for a new service to be broken for a long
period of time without testbed operators being aware, which is, of course, detrimental to
attracting users.

4.3.3 And bugs can have dramatic consequences

In a testbed where most of the users are interested in measuring performance, subtle bugs
can have a huge impact. For example, a misconfigured service or node could reduce
performance by 5% or 10%, and thus lead experimenters to wrong conclusions about the
solutions they are comparing, which could result in the need to retract a paper. Example cases
where this could happen, all based on real facts, are:

• Different CPU settings, such as power management (Cstates), hyperthreading, or turbo

boost;

• Different disk firmware version;

• Different cache settings in a disk drive;

• Cabling issue that would cause wrong measurements by testbed-managed monitoring

services (e.g. measuring the power consumption of another one).

In addition, there are also many problems that can be found at the software side, causing
services to be unreliable and making it much harder to automate experiments.

4.4 DESIGN OF OUR TESTBED TESTING FRAMEWORK

In order to design a testbed testing framework, we leveraged the Jenkins automation server to
run testing scripts. But we had to work around several limitations of Jenkins through external
developments, most notably for tests scheduling, and analyzing and summarizing results. The
following paragraphs explore each of those aspects.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 72 of 166

Overall, we tried to build on the widely accepted best practices in software engineering about
test suites, continuous integration (CI) and continuous delivery (CD), but had to adjust because
of specifics of the context, and of our goals.

4.4.1 Jenkins automation server

Jenkins [12] is the de facto standard for automating processes. In a nutshell, it can be seen as
the cron Unix service on steroids. Using Jenkins, one can define jobs (tasks) that are executed

in a specified environment, started by various means. The result and output of jobs are stored
by Jenkins (as well as historical data).

Jenkins can be extended through plugins. A central plugin for our work was the Matrix Project
Plugin, that adds support for defining jobs as matrices of several options. We used that for
most tests in order to cover all possible configurations. For example, the test_environments job

is in charge of testing the deployment of each of the 14 reference environments provided by
the technical team, on each of the 32 clusters, resulting on 448 configurations for that test
alone. Another related useful plugin was the Matrix Reloaded Plugin, that adds support for
restarting a subset of configurations in a Matrix job.

Several other plugins also proved useful, such as the Build Timeout Plugin (to work around
unexpected problems in some test scripts).

However, Jenkins alone proved insufficient for our needs, mainly for two aspects: fine-grained
job scheduling, and analyzing and summarizing results. How we addressed those is detailed
in the following sections.

4.4.2 Job scheduling

The scheduling of test jobs on the testbed was difficult to design (and a challenge that caused
a previous iteration of work on this topic to fail). The requirements are fairly complex. First,
different kinds of tests need to be addressed: some that focus on software, and only require
one node per cluster; other that focus on hardware, and require all nodes from a cluster.
Second, the scheduling must handle the fact that the resources might not be available
(because of resources already reserved, or resources reservations made in advance for the
future, that will prevent the allocation of resources for the required duration). Third, the
scheduling must avoid disrupting other usages of the testbed.

Submitting test jobs as normal resources reservations, and waiting until resources are
allocated, is not an option because: (1) Jenkins has a limited number of workers (job slots), and

a pending reservation would use such for slot, possibly for days; (2) The test jobs would
compete with usermade resources reservations, and possibly block resources when users
would want to use them.

Also, submitting jobs at the same time every day or week is not an option either, because it
would be unlikely that the resources would be available.

The solution that was implemented was a tool external to Jenkins that would, for each
configuration of each test job, and on a regular basis (every 10 minutes): (1) query the status
of the configuration, and make a decision about whether a new run should be attempted, based
on the current state of the test (successful, failed) and on a per-job delay between attempts;

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 73 of 166

(2) evaluate the status of the testbed to determine, using a basic analysis, if the job could start
immediately; (3) start the job, and if it ends up not being scheduled by the testbed’s resource
manager after a few minutes (due to conditions that were not considered in step 2, cancel it
(and mark it as unstable in Jenkins).

As a result, test jobs are only scheduled when resources are available, and as frequently as
possible.

To further reduce the impact on users, two additional rules have been implemented. First, the
scheduler avoids starting test jobs during peak hours (8 am-9:30 am, 12:30 pm-2:30 pm), that

is, when most users are likely to start working on Grid’5000 and reserving resources. Second,
the scheduler never starts two test jobs simultaneously on the same site.

On the busiest sites, this policy sometimes caused test jobs to be delayed for several days as
resources were permanently reserved by users. For some jobs where partial results where
particularly useful, specific test configurations for running the test on a single node or on all
available nodes were added.

4.4.3 Analyzing and summarizing results

Another need that was not well served by Jenkins alone is the ability to provide a useful
summary of the results. There are several different requirements: (1) per test status (for all
sites or clusters); (2) per-site or per-cluster status (for all tests); (3) historical perspective.

A per test status is reasonably well provided by Jenkins, but is unfortunately made rather
unusable due to the unstable status for jobs that were started but could not be scheduled.

Jenkins does not provide a way to build a per-site status. Jenkins provides some historical
perspective, using weatherlike icons for each job, but it was insufficient for our needs.

To meet those needs, we designed an external status page by exporting data from Jenkins
using its REST API5. That page (Figure 27) provides a table summarizing the status (current
success percentage) for each site and test, and then a list of all failures that can be filtered
using basic Javascript. Each failure can be annotated by engineers, for example to mention
the corresponding bug.

Using the same method, we wrote a plugin for the Munin monitoring tool to keep historical data
about each job and each site (Figure 26).

4.4.4 Why Jenkins, after all?

Due to the large number of Jenkins limitations that were worked-around, one could wonder if
using Jenkins as a basis was really a good choice in the first place. We still believe it is,
because (1) Jenkins provides a clean execution environment for scripts, with a queue to avoid

5 Which, it is worth noting, is extremely well designed: it provides a way to get data about all jobs with a configurable level of detail in just
one HTTP request.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 74 of 166

overloading, the ability for users to trigger manual builds through a web interface; (2) Jenkins
provides a storage system for test logs (and optionally, to store artifacts about test runs, such
as raw data files, that could be useful in the future), the history of build results, and the ability
to browse those test logs through a web interface.

Re-developing those features could have been an option, but would have resulted in significant
development work. Additionally, Jenkins is also used for more traditional continuous integration
tasks, and it makes sense to keep those CI tasks and testbed testing in the same tool in order
to combine them. For example, there are CI tasks that build development versions of software,
and then run testbed tests with those development versions installed, in order to evaluate
whether those versions are suitable for release.

4.4.5 Test scripts

The goal of test scripts should be to exhibit issues, but also to provide sufficient information to
testbed operators to understand and fix the issue. One important limitation of bug reports
submitted by users is that issues are described as the users see them, and usually not with all
the information that testbed operators would like to have. This problem can be avoided using
an automated testing framework only if the scripts are carefully designed in a way that provides
that information.

For that reason, we wrote the test scripts using rather simple tools, and performing steps that
would be close to what one would use when trying to reproduce a problem manually (which is
considered a good practice for automation [13]).

As Grid’5000 is documented through a series of tutorials, an option that was considered was
to use the content of those tutorials as the list of actions that would be automated and tested.
If successful, it would have ensured that tutorials continue to work over time (which has been
a problem in the past). However, this idea was rejected because (1) tutorials are designed with
pedagogy in mind, not with test coverage; (2) most tutorials have several options (paths) at
one point or another, making it difficult to automate. Therefore, for now we focused on simpler
tests that cover the features of the testbed that are known to fail the most frequently,
independently from how they are used in tutorials.

At the time of writing, the following tests have been developed and are in production:

• refapi: Check (1) the conformance of the description of each node in the Reference API

compared to a schema; (2) That nodes of each cluster are homogeneous in terms of

hardware configuration, according to their description in the Reference API.

• oarproperties: Check that the properties of nodes in the OAR resource manager match

what would be generated based on the information in the Reference API.

• oarstate: Check the current state of nodes in the OAR resource manager (in particular,

check that disabled nodes – due to hardware failure – are correctly documented).

• cmdline: Perform basic operations using command-line tools (reservation, deployment). All

other tests rely on the Grid’5000 REST API.

• sidapi: Perform basic operations using the development branch of the Grid’5000 REST

API. All other tests use the stable branch.

• environments: Check that each environment maintained by the Grid’5000 team can be

provisioned on each cluster, and further check functionality of various features after

provisioning (e.g., Internet access from the node).

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 75 of 166

Figure 26: Historical status for each job, as provided by Munin

Figure 27: Status page for all tests and sites

• stdenv: Similarly to environments, perform functional checks in the standard environment

that is available on nodes without provisioning.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 76 of 166

• paralleldeploy, multireboot, multideploy: Perform stress tests on the testbed, ensuring that it

is possible to initiate several nodes provisioning operations concurrently, that nodes do

not randomly fail to boot

by rebooting them several times in a row, and that nodes do not randomly fail to deploy by
deploying them several times in a row.

• console: Check that out-of-band consoles work on every node.

• kavlan: Check that network reconfiguration works on every node and network interface.

• kwapi: Check that power monitoring works on every node.

• mpigraph: Perform a MPI matrix bandwidth test to check connectivity and performance for

all nodes of each cluster, and for each network technology (Ethernet, Infiniband, IPoIB).

• disk: Check homogeneity of disk configurations (read and write caches) and performance

among nodes of the same cluster.

• dellbios: Check that BIOS parameters are homogeneous inside a cluster, and that some

parameters follow testbed-wide rules (e.g. CPU configuration). Due to public procurement

rules in France, most of the Grid’5000 clusters use Dell hardware, which justifies this

vendor-specific test.

Overall, this currently results in a total of 751 test configurations. Other tests will be added in
the future. The kwapi test should be extended to cover network traffic measurements. Other

aspects of the testbed’s network configuration could be tested, such as MTU settings or
support for multicast. Also, at the software level, the tools for automated deployment of
OpenStack and Ceph should be tested on all testbeds.

4.5 RESULTS AND DISCUSSION

During the course of this work, 118 bugs were filed in the Grid’5000 bug tracking system, of
which 84 have already been fixed. This includes issues that were directly found by the tests,
but also problems that were discovered while writing tests, as writing scripts that should run on
every cluster and site proved to be a good way to uncover various usability issues (e.g.
differences between sites that are not described in the Reference API).

Here are a few examples of issues that were found in the process6:

• Several cases of heterogeneous configuration or documentation (different ways to

document the same property on different sites) were uncovered by test refapi and some

other tests (e.g. the disk and dellbios test): heterogeneous BIOS versions or configuration

inside a cluster, disk drives configuration (read or write caching), CPU power configuration

settings (C-states), etc. (bugs 7473, 7465, 7675, 7407, 7585, 7370, 7371, 7584, 7586)

6 The corresponding bugs are available in the Grid’5000 bug tracker (https://intranet.grid5000.fr/bugzilla/). A Grid’5000 account is
required, but could be obtained through the Open Access program.

https://intranet.grid5000.fr/bugzilla/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 77 of 166

• The kavlan test exhibited a number of cabling errors, where two nodes would be inverted

in the KaVLAN configuration (bugs 7669, 7580, 7767, 7735, 7381, 7663, 7598, 7515,

7290), and cases where the driver for our network equipment would fail to properly handle

error conditions (bug 7637, 7685);

• A number of other weak spots in our infrastructure (unable to handle load, or to work

reliably) were uncovered by tests paralleldeploy, multireboot, multideploy (bugs 7482, 7403,

7415, 7686, 7502, 7503). Specifically, the out-of-band consoles service, which was

thought to be reliable, was actually failing frequently (bugs 7770, 7362, 7570, 7325, 7466,

7574, 7575, 7411, 7576).

• Some configuration problems were detected in the images that we provide. The network

configuration was invalid on one cluster for two images (bug 7342, 7302). The Infiniband

stack was randomly failing to start on boot due to an interesting bug (Figure 28).

• A hardware issue causing random reboots on one of the older clusters (the Grenoble

adonis cluster). As the warranty had expired, the cluster was shut down.

Figure 28: Excerpt of the openibd script (part of the OFED Infiniband stack, and responsible for
starting it during boot). the use of grep $app caused random failures to start, as any unrelated process

with e.g. libnss in this command line would cause the test to succeed, and the service to abort start
up. The image was updated to a newer version of the OFED script, which switched to using pgrep for

more reliable process matching.

Many of the above issues are either issues that are difficult to detect as they do not cause
nodes or services to stop functioning, but rather affect experiments in subtle ways; or issues
that include an amount of randomness. Very few of those kinds of issues were reported by
users.

Two issues in particular are worth explaining in more details.

Boot failures due to a race condition in the kernel (bug 7347): Our work also uncovered bugs

that affected more critical pieces of software. While analyzing test failures, we noticed that
nodes were taking much longer to boot in about 5% of cases. The problem was tracked down
to LVM2 initialization waiting for systemd-udev-settle execution, which is a command in charge

of waiting for all physical devices to be initialized that is included as a dependency for LVM2 in
the Debian 8 boot sequence. However, due to a race condition in the kernel, a CPU core
initialization was hanging, causing systemd-udev-settle to also hang until it reached a timeout.

This has been reported to Debian7and will be fixed in a future update of the 3.16 branch of the

7 https://bugs.debian.org/841171

• local apps="opensm osmtest
ibbs ibns" for app in $apps do
• if (ps -ef | grep $app | grep -v grep > /dev/null 2>&1); then echo "Please stop $app and
all applications running over InfiniBand" echo "Then run \"$0 $ACTION\"" exit 1
• fi
• done

https://bugs.debian.org/841171

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 78 of 166

kernel (it was already fixed in Linux 3.19, but Linux 3.16 is the version in Debian 8). This kind
of issue shows that the devil is in the detail, and that no piece of software should be considered
bug-free.

Heterogeneous disk performance on supposedly identical hardware (bug 7658): The Nantes

Grid’5000 site hosts the econome cluster, composed of 22 Dell PowerEdge C6220 nodes (a

single 2U chassis hosts four servers) with the exact same hardware configuration. On this
cluster, the disk test showed lower performance on four nodes (from the same chassis): the

test workload exhibited an average sequential read bandwidth of 79.3 MB/s on the slow nodes,
vs 87.7 MB/s on the fast nodes (a 10% performance difference). Also, the SATA rate advertised
by the disk was different (SATA 2.6 on the slow nodes, SATA 3.0 on the fast nodes). It turns
out that the slow chassis was bought five months before the rest of the nodes (June 2012 vs
November 2012), and, while it was indeed the exact same hardware configuration, it shipped
with a different set of BIOS and firmware versions. Due to the lack of tests, this was not
detected at the time of the cluster installation. Upgrading the BIOS version on the older nodes
did not solve the problem, but upgrading the disk firmwares did.

Obviously, for all experiments performed on this cluster where storage performance had an
impact, this puts into question the results that were obtained (as the heterogeneous
performance might create results that depend on the placement of data on specific nodes), the
repeatability of results (as different nodes from the same cluster would provide different results)
and overall, the reproducibility of experiments.

4.6 RELATED WORK

There has been very little work on testbed testing, verification and quality control.

On Grid’5000 itself, it was already mentioned before that each time a node boots, a tool called
g5kchecks downloads the node’s description from the Grid’5000 Reference API, and then

verifies using various inventory tools that the visible hardware configuration on the node
matches the description from the Reference API [4]. This is complementary to the work
described in this section, as g5kchecks is not in a position to verify properties at the cluster, site

or testbed level (e.g. that clusters are homogeneous). Also, the fact that it runs when the node
boots make it timecritical, and thus it cannot run longer performance measurements or tests
requiring the collaboration of several nodes. The Emulab-based testbeds (e.g. CloudLab) use
a tool that is similar in scope to g5k-checks called CheckNode [18].

Also on Emulab, LinkTest [19] can validate the network characteristics of an Emulab
experiment (connectivity, latency, bandwidth, link loss, routing).

More generally, this work builds on the products of good practices in software engineering, like
software testing [3], continuous integration (CI), continuous delivery (CD) and automation in
general. It is similar in some ways to performance regression testing, which is more and more
advocated in various communities, e.g. in the Linux kernel development community [20].

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 79 of 166

4.6.1 REFERENCES

[1] R. D. Peng, “Reproducible research,” Coursera lecture, Week 1, Part 2. [Online]. Available:

https://www.coursera.org/learn/ reproducible-research

[2] T. Buchert, C. Ruiz, L. Nussbaum, and O. Richard, “A survey of general-purpose experiment management

tools for distributed systems,” Future Generation Computer Systems, vol. 45, pp. 1 – 12, 2015. [Online]. Available:
https://hal.inria.fr/hal-01087519

[3] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John Wiley & Sons, 2011.

[4] D. Margery, E. Morel, L. Nussbaum, O. Richard, and
C. Rohr, “Resources Description, Selection, Reservation and Verification on a Large-scale Testbed,” in

TRIDENTCOM -
9th International Conference on Testbeds and Research Infrastructures for the Development of Networks &

Communities, Guangzhou, China, May 2014. [Online].
Available: https://hal.inria.fr/hal-00965708

[5] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and O. Richard, “A batch

scheduler´ with high level components,” in Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International

Symposium on, vol. 2. IEEE, 2005, pp. 776–783.

[6] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum, “Kadeploy3: Efficient and Scalable Operating System

Provisioning for Clusters,” USENIX ;login:, vol. 38, no. 1, pp. 38–44, Feb. 2013. [Online]. Available:

https://hal.inria.fr/hal-00909111

[7] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez,
E. Jeannot, E. Jeanvoine, A. Lebre, D. Margery, N. Niclausse,` L. Nussbaum, O. Richard, C. Perez, F.

Quesnel, C. Rohr,´ and L. Sarzyniec, “Adding virtualization capabilities to the Grid’5000 testbed,” in Cloud

Computing and Services Science, ser. Communications in Computer and Information Science, I. Ivanov, M.

Sinderen, F. Leymann, and T. Shan, Eds. Springer International Publishing, 2013, vol. 367, pp. 3–20.

[8] F. Clouet, S. Delamare, J.-P. Gelas, L. Lefevre, L. Nussbaum,` C. Parisot, L. Pouilloux, and F. Rossigneux, “A

Unified
Monitoring Framework for Energy Consumption and Network Traffic,” in TRIDENTCOM - International Conference

on Testbeds and Research Infrastructures for the Development of Networks & Communities, Vancouver, Canada, Jun.

2015, p. 10. [Online]. Available: https://hal.inria.fr/hal-01167915

[9] S. Tatham, “How to report bugs effectively,”
1999. [Online]. Available: http://www.chiark.greenend.org. uk/∼sgtatham/bugs.html

[10] E. S. Raymond and R. Moen, “How to ask questions the smart way.” [Online]. Available:

http://www.catb.org/esr/faqs/ smart-questions.html

[11] B. Gregg, “Visualizing system latency,” Commun. ACM, vol. 53, no. 7, pp. 48–54, Jul. 2010. [Online].

Available:
http://doi.acm.org/10.1145/1785414.1785435

[12] “Jenkins – build great things at scale.” [Online]. Available: https://jenkins.io/

[13] T. A. Limoncelli, “Automation should be like iron man, not ultron,” Queue, vol. 13, no. 8, pp. 50:50–50:59,
Sep. 2015. [Online]. Available: http://doi.acm.org/10.1145/ 2838344.2841313

[14] “Fed4fire – monitoring.” [Online]. Available: https:
//flsmonitor.fed4fire.eu/

[15] B. Vermeulen, “Fed4fire d2.8 – third integration and testing roadmap,” 2016. [Online]. Available:

https://www.fed4fire.eu/wp-content/uploads/2016/10/ d2-8-third-integration-and-testing-roadmap.pdf

https://www.coursera.org/learn/reproducible-research
https://www.coursera.org/learn/reproducible-research
https://hal.inria.fr/hal-01087519
https://hal.inria.fr/hal-00965708
https://hal.inria.fr/hal-00909111
https://hal.inria.fr/hal-01167915
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.catb.org/esr/faqs/smart-questions.html
http://www.catb.org/esr/faqs/smart-questions.html
http://doi.acm.org/10.1145/1785414.1785435
https://jenkins.io/
http://doi.acm.org/10.1145/2838344.2841313
http://doi.acm.org/10.1145/2838344.2841313
https://flsmonitor.fed4fire.eu/
https://flsmonitor.fed4fire.eu/
https://www.fed4fire.eu/wp-content/uploads/2016/10/d2-8-third-integration-and-testing-roadmap.pdf
https://www.fed4fire.eu/wp-content/uploads/2016/10/d2-8-third-integration-and-testing-roadmap.pdf

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 80 of 166

[16] “Fed4fire federation monitor.” [Online]. Available: https: //fedmon.fed4fire.eu/

[17] “Geni am api acceptance tests.” [Online]. Available:

http://trac.gpolab.bbn.com/gcf/wiki/AmApiAcceptanceTests

[18] “Emulab – checknode.” [Online]. Available: https://wiki. emulab.net/wiki/checknode

[19] “Emulab – linktest.” [Online]. Available: https://wiki.emulab. net/wiki/linktest

[20] D. Bueso, “Performance monitoring in the linux kernel,” in Linux Plumbers Conference, 2015. [Online].
Available: http://events.linuxfoundation.org/sites/events/files/ slides/dbueso-lpc-2015-kperfmonitor.pdf

https://fedmon.fed4fire.eu/
https://fedmon.fed4fire.eu/
http://trac.gpolab.bbn.com/gcf/wiki/AmApiAcceptanceTests
https://wiki.emulab.net/wiki/checknode
https://wiki.emulab.net/wiki/checknode
https://wiki.emulab.net/wiki/linktest
https://wiki.emulab.net/wiki/linktest
http://events.linuxfoundation.org/sites/events/files/slides/dbueso-lpc-2015-kperfmonitor.pdf
http://events.linuxfoundation.org/sites/events/files/slides/dbueso-lpc-2015-kperfmonitor.pdf

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 81 of 166

5 FEDERATION MONITORING

5.1 INTRODUCTION

Because the federation of testbed is a ‘loose’ federation (there is no single entity controlling all
testbeds), continuous monitoring of the testbeds is key. In that way, both the testbed operators
can be warned if something goes wrong and the experimenters can have an overview of which
testbeds are okay to use.

5.2 FED4FIRE FLSMONITORING

Already in Fed4FIRE we had a first version of federation monitoring, a screenshot of the front-
end dashboard can be seen in Figure 29 and can be found live at
https://flsmonitor.fed4fire.eu/fls (it was then known as First Level Support (FLS) monitoring).

Figure 29: Screenshot of federation monitoring in the Fed4FIRE project (2012-2016)

https://flsmonitor.fed4fire.eu/fls

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 82 of 166

Figure 30: Basic monitoring setup

Figure 30 shows the basic inputs for that monitoring:

• We ping the AM (Aggregate Manager) API endpoint of the testbed to know if there is a
general networking problem or not

• After that, we do a GetVersion call which is an unauthenticated call which learns us if
the API is up and running or not

• The listRresources call tests if the authentication is okay and gives us also the number
of free resources

• In Fed4FIRE we also had internal facility monitoring (e.g. Zabbix, Nagios, …) of which
the testbed sent information to the monitoring. This has been removed mostly from the
monitoring as not that many testbeds sent that information (especially from other
federations).

All these tests run each 15-60 minutes and result in a Red-Amber-Green status called the
‘Aggregated Status’.

Apart from these API calls, there is also run once or twice a day a full experiment with a single
node, including ssh login. This the login status. From the history of the aggregated status and
login status, we create the health status. E.g. if a login test fails once in the last 31 days, the
health is 90%. If it fails twice in the last 7 days, it is 72%, etc.

5.3 FED4FIRE+ NEW MONITORING

In Fed4FIRE+ we overhauled the federation monitoring for the following reasons:

• To make the back-end more scalable. There are more and more tests (see further) and
more and more testbeds. Some tests take more time or timeout, so more tests in
parallel are ongoing. This scheduling complexity cannot be handled by existing

TESTBED X

AM interface

ICMP ping
jFed: getVersion jFed: listResources

F
e

d
e

ra
tio

n
 m

o
n
ito

r
T
e

s
tb

e
d

Not okay

OR
latency

okay

OR
Not okay

free

resources

Testbed injects

monitoring info into
OML-stream

Aggregated

RAG-status +
timestamp

Facility
monitoring

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 83 of 166

frameworks as Jenkins, so we have improved our basic scheduler of Fed4FIRE to cope
with this.

• To make the front-end more appealing and scalable for the amount of testbeds being
monitored

• To have an API to the monitoring, so user tools as jFed can use the information to
present to the end users. Other tools can also get the information as needed.

• To add more specific tests (e.g. test each node of a testbed), see further.

The new front-end can be found at https://fedmon.fed4fire.eu and in Figure 31. The selectors
on the left can be used to only show particular types of testbeds. The new monitor has also a
map view (Figure 32).

Figure 31: Screenshot of front-end of https://fedmon.fed4fire.eu

https://fedmon.fed4fire.eu/
https://fedmon.fed4fire.eu/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 84 of 166

Figure 32: Map view of https://fedmon.fed4fire.eu

Figure 33 and Figure 34 show more details on the monitoring icons available per testbed, while
Error! Reference source not found. shows a zoomed out screenshot of almost all testbeds
monitored.

Figure 33: Icon overview of a single testbed (ping, getversion/listresources, login test, number of free
and total resources, health status)

Figure 34: When hovering over the icons, the user can get more information, e.g. why the health
status is not 100%

When clicking on a testbed, one comes into a detailed overview per testbed of the tests being
run (Figure 35), an overview of the resources (and evolution over time, see Figure 36), and an
overview of the testbed availability during the last year (Figure 37).

Figure 35: More detailed information per testbed

https://fedmon.fed4fire.eu/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 85 of 166

Figure 36: Evolution over time of free and total resources of a testbed

Figure 37: Evolution over time of the testbed uptime (1 square is a single day)

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 86 of 166

Figure 38: Zoomed out overview of almost all monitored testbeds

5.4 FEEDBACK OF THE MONITORING TO THE USER

As also described in D2.2, we want to show all this monitoring information also in an easy way
to the users. For this, an API was created on top of the monitoring framework, and through
that API, the information about the testbeds is fetched by jFed and shown to the users. See
Figure 39 and Figure 40.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 87 of 166

Figure 39: Testbed and resource availability visible in jFed

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 88 of 166

Figure 40: jFed availability resources and resources per hardware type

5.5 SPECIFIC TESTS

In Fed4FIRE+ we added also specific and more advanced tests (although the node ssh login
test is already advanced, it does not test deploying software on the node or using multi-node
setups). These specific tests can be reached from the top menu bar at
https://fedmon.fed4fire.eu.

5.5.1 GENI tutorial testing

There was a demand in both GENI and Fed4FIRE to be able to test the tutorials typically
offered to new users. Especially in GENI sometimes a tutorial failed because a specific testbed
(GENI rack) did miss a needed image or configuration. The overview of GENI tutorial testing
can be found at: https://flsmonitor.fed4fire.eu/genitests and in Figure 41. Ansible is used to
automate these tests.

https://flsmonitor.fed4fire.eu/genitests

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 89 of 166

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 90 of 166

Figure 41: GENI tutorial testing

Figure 42: Exogeni monitoring integrated in the www.exogeni.net webpage

5.5.2 Testing specific devices, e.g. IoT sensors

For certain testbeds (e.g. wireless testbeds, planetlab), users chose specific nodes to use. So
it is important that we know for each node if it works or not. For w-iLab.t 1, there is also a
Zolertia re-mote IoT device attached to each linux node. We wanted to verify if the linux nodes
and Zolertia devices are operational or not. At https://fedmon.fed4fire.eu/wilab/ one can find
an overview of these results. Each week, it is tried to verify all devices.

The output in Figure 43 shows per line the result of a single node:

• Green means all is fine, serial numbers are printed, a temperature reading is shown to
verify that the firmware flashing to the IoT sensor has been correct and the date when
this node was last tested is shown. (if a node is in use, then it can’t be tested e.g.).

• Red means something is wrong.

• Right top shows also an overview, e.g. 149 devices are working correctly, 4 are broken.

• When clicking the + at the left (Figure 44), more details can be seen (e.g. detailed test
output, test history to see when it was broken, etc)

https://fedmon.fed4fire.eu/wilab/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 91 of 166

Figure 43: w-iLab.t weekly testing of all nodes

Figure 44: Extra info when clicking + at the left

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 92 of 166

Figure 45: Ansible output of w-iLab.t node test

These tests are also running ansible scripts. In this way a testbed provider can provide us
ansible scripts they want to run, and we provide the automation.

5.5.3 Automatically testing software on testbeds

For the Wishful project (http://www.wishful-project.eu/) , there was a demand to regularly test
their software suite on real testbed nodes to verify if changes were still okay. The following
tests are done once per day (Figure 46, https://flsmonitor.fed4fire.eu/wishfull/):

• Deploy local and global controller on a single node for simple basic functionality testing
(column ‘local’)

• Deploy global controller and local controller on different nodes to test the messaging
system over wifi (column ‘remote’)

• Deploy full scenario with access point and client and an iPerf performance test (column
‘iPerf’)

https://flsmonitor.fed4fire.eu/wishfull/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 93 of 166

Figure 46: Wishful software testing, when clicking on ‘details’ more info on the test can be seen

5.5.4 Continuous IoT interop and conformance testing

In collaboration with the H2020 F-Interop project (https://www.f-interop.eu/), we have taken it
even one step further. By deploying automatically the whole interop/conformance platform on
a testbed and using testbed IoT devices, we can continuously run the F-interop test suites and
verify interop and conformance on new versions of the IoT firmware, or new versions of the
test suites.

Figure 47 shows an overview of the daily test run (https://fedmon.fed4fire.eu/history/1413).
When clicking on ‘F-interop’ , one can see Figure 48 with details on all the tests for multiple
pairs of testing.

https://www.f-interop.eu/
https://fedmon.fed4fire.eu/history/1413

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 94 of 166

Figure 47: Daily F-interop platform testing

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 95 of 166

Figure 48: F-interop COAP interop testing automatically on Fed4FIRE testbeds

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 96 of 166

6 INTERCONNECTIVITY

For interconnectivity, jFed was extended in two ways:

• A better visual way of showing the different connectivity methods. Figure 49 gives an
example of all methodes:

o Normal layer 2 connectivity (link1)
o Tagged vlan connectivity (link0)
o GRE tunnel (link2 and link3)
o Stitched vlans between multiple testbeds (link4)

• Where possible, chose automatically the most default way. E.g. for City of Things, no
vlans are possible, no stitching, so by default a gre tunnel is chosen (link3). This will
help experimenters to easily interconnect in the ‘right’ way (seen as most adequate by
the testbed owners)

Figure 49: jFed visualisation of different interconnectivity methods

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 97 of 166

7 SERVICE ORCHESTRATION (YOUREPM)

YourEPM is a tool that was started in Fed4FIRE. Its goal is to have complex experiment
orchestration/workflows in the federation. In the first 18 months of this project, not that much
work was spent on the implementation yet, besides the identification of the topics/requirements
to work on in the next period (see also D3.1):

• Multi-tenant use

• Authentication of users

• Management of 3rd party access to the tool

• Integration with jFed

• Creation of complex experiments as example

Figure 50: YourEPM architecture

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 98 of 166

8 AUTHENTICATION PROXY SERVICE

The authentication proxy service for which the requirements are listed in D3.1 is implemented
and tested for a service called GPULab (https://doc.ilabt.imec.be/ilabt-
documentation/gpulab.html). GPULab offers easy GPU based experimentation based on
docker containers and Fed4FIRE accounts.

For this service, users can use a client (Figure 51) which talks through REST to the
authentication proxy, which talks both to the Fed4FIRE authority and to the specific GPULab
service. We will report in more detail on this in D3.04 (developments of the 2nd cycle).

Figure 51: GPULab client

https://doc.ilabt.imec.be/ilabt-documentation/gpulab.html
https://doc.ilabt.imec.be/ilabt-documentation/gpulab.html

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 99 of 166

9 CENTRAL BROKER

9.1 INTRODUCTION

The Central Broker is a component (Figure 52) that will help users in selecting resources, by
‘brokering’ between all the testbed resources and the users.

Figure 52: Central Broker

9.2 REDESIGN

During the first cycle of developments for Fed4FIRE+, a major architectural transition has
occurred for the central broker; the release of MySlice version 2. The new MySlice provides a
more robust and agile back-end that can be used by the Central Broker towards providing a
better user experience. CERTH has redesigned the overall architecture of Central Broker to
support this new version.

Central

Broker

REST

Testbeds Federation Services

AM

SFA

MySlice

Plugin

X Service

X API

Manifold

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 100 of 166

Although, since currently there is no MySlice v2 instance in production for Fed4FIRE+, CERTH
has implemented all the additions that are being reported in the current document, in a sandbox
environment using pre-captured data and not live data.

For future cycles CERTH will integrate the Central Broker with MySlice version 2, as
soon as a production instance is offered for Fed4FIRE+.

9.3 NEW CAPABILITIES

CERTH further enhanced the capabilities of the Central Broker to support quota policies per
domain (testbed users) as well as per urn (specific user). Quotas are related to number of
resources and maximum time of reservation of these resources. Enabling/disabling policies
can be done with a configuration file. With quota policies enabled, Central Broker has the ability
to take into consideration the quotas before suggesting the topology to the experimenter.

9.4 NEW TESTBED SUPPORT

A crucial factor for rendering the Central Broker into a useful federation service for the
experimenters, is its capability in supporting many and different kinds of testbeds. During the
first cycle of developments a prototype that enables Central Broker to include w-iLabt pool of
resources has been implemented.

9.5 NEW MYSLICE – VERSION 2

The first prototype of MySlice v1 was tightly coupled with the underlying AM API. As long as
one of the Aggregate Managers of the federation was down or answered with a long delay, the
user experience was affected. Moreover, a large number of redundant queries were sent at
the same time by different users, such as the list of resources. The version 2 of MySlice
addresses those issues improving thus the user experience.

The new architecture is composed of 5 layers with a clear separation of concerns: Web
frontend, APIs (REST/WS), Database, Services with workers and Library (XML-RPC), see
Figure 53.

The frontend has been redesigned using the ReactJS framework. The benefit of using such a
framework is to create generic components that can be re-use in different views depending on
the properties passed to the components. Moreover, the management of a store that maintains
a state of a component or a view is very well suited for an event-oriented application.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 101 of 166

Figure 53: MySlice v2 architecture

We have clearly defined the REST and WebSocket APIs used by the React components and
third-party software. The web components are able to get or post data through the REST API
and can be notified of a change through the WebSocket, providing a very interactive frontend.
Some interactions of the user with the frontend are generating events that are stored in a
document oriented database. The MySlice router is then responsible to place these events in
the relevant queue depending on their type. Each type of event is asynchronously processed
by a service. The services are calling workers that can be multithreaded to scale up the
capabilities of the system. The workers are responsible of the interactions with the distributed
testbeds through the AM API (XML-RPC) and with the SFA Registry, which is the root authority
of the federation providing the credentials to access the testbeds.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 102 of 166

10 ONTOLOGIES: USING SEMANTIC WEB TECHNOLOGIES TO
QUERY AND MANAGE INFORMATION WITHIN FEDERATED
CYBER-INFRASTRUCTURES

10.1 INTRODUCTION

This section is largely based on the following publication: Willner, A.; Giatili, M.; Grosso, P.;
Papagianni, C.; Morsey, M.; Baldin, I. Using Semantic Web Technologies to Query and
Manage Information within Federated Cyber-Infrastructures. Data 2017, 2, 21. It is based on
work of Fed4FIRE, Fed4FIRE+ and other projects. It gives a complete overview of the base
ontology work for federation of testbeds. The references can be found in 10.8.

Cloud computing supports many distributed applications that are vital to the economy and to
the advancement of science. The rising popularity of cloud computing and the diversity of
available resources create an urgent need to match those resources optimally to the requests
of end-users.

The desired level of self-serve operation within the cloud obviates the need for intervention by
IT departments, allowing end-users direct and independent access to the computational
infrastructure. As a result, end-users can deploy the necessary infrastructure and software
solutions rapidly. Toward this end, accurate modeling of the infrastructure must support
abstract representation of various resources, simplify interactions with them, and expose the
right levels of information. The next frontier in cloud computing lies in supporting widely
distributed clouds and the various aspects of the architectures needed to manage resources
across multiple administrative domains. These problems are also closely related to future
Internet research in academia, as well as to emerging commercial technologies like the
Internet of Things (IoT) [1].

Modeling cloud infrastructures in a manner that supports effective matching of users’ requests
with available resources is a challenging task. The issue becomes even more complex in the
context of distributed cloud systems with multiple infrastructure owners. In the academic
research the same problem is encountered when trying to describe computational resources,
scientific instruments and testbeds, which belong to different institutions and must be used by
inter-disciplinary and inter-institutional collaborative teams. In such environments each
infrastructure owner may model resources using their particular information and data modeling
approach to set up the system quickly and attract users. The end-result, however, is user lock-
in and inability to easily leverage available resources if they belong to different owners. Thus,
resource matching and recommendation based on common models becomes of great

importance.

This section describes Open-Multinet (OMN) [2], a set of ontologies that rely on Semantic Web

(Semantic Web) [3] technologies. It was designed by an international team of academic
researchers who are intimately familiar with the related problems. The OMN researchers are
also involved in multiple efforts to design a federation of Future Internet and cloud testbeds
spanning the US and the EU, to be used for at-scale experimentation with novel concepts in
networking and distributed systems. While we briefly introduced the ontology set in [2] and

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 103 of 166

presented a preliminary description of its application in the context of a federated cloud
environments in [4], in this section we complement our previous work (of Fed4FIRE) by an
extended description of the OMN ontology set and we further added new evaluation results of
the overall OMN framework (this is done in the Fed4FIRE+ project).

Motivation for our work comes largely from our experience with the growth of academic
networking, including the proliferation of cloud testbeds. Their ad hoc attempts to federate with
each other, i.e., to make their resources available to wider communities of users through
common interfaces, suffer from a lack of common models to describe available resources.
Testbed owners use such models chiefly to provide their users with information about available
resources, e.g., compute nodes, storage, network switches, and wireless access points. Each
user, in turn, employs similar models to request resources from the testbeds, describing in
some detail the exact configuration of available resources needed from the testbed.

Most testbeds are small when they first launch. Their designers often spend little time thinking
through the information model that they wish to use to present resource information to users.
Testbeds frequently rely on home-brewed solutions utilizing syntactic schema specifications
serialized using XML or JSON, sometimes referred to as RSpecs, although RSpec is also a

name of a specific XML dialect used by most of the testbeds in the US and EU. Documents
expressed in those languages are passed between the users and the testbed management
software in order to describe the available resources and to request specific configurations of
resources for the experiments. While the built-in mechanisms in those languages allow for
straightforward verification of document syntax, few mechanisms are available for validation
of semantic correctness. These solutions typically rely on structure-implied semantics to
validate correctness by associating semantic meaning rigidly with the position of information
elements within the document.

These approaches tend to work in early phases of the design. As the diversity of resources
grows, however, and as the sophistication of users increases, the need arises for extension
mechanisms. Demand emerges for more powerful resource descriptions. The extension
mechanisms then inevitably relax the structure-implied semantics, thus making validation of
documents progressively more difficult. We observed this development first-hand in the case
of US Global Environment for Network Innovations (GENI) [5] and EU Future Internet
Research and Experimentation (FIRE) [6] testbed-federation efforts. XML schema extensions
were introduced to allow different federation members to describe the unique attributes of their
cloud testbeds. The extensions, we found, made it possible to create syntactically valid but
semantically invalid documents requesting resources from a testbed, e.g., by requesting that
a particular operating-system image be attached to a network interface instead of to a compute
node.

Informed by these experiences, we decided to adopt Semantic Web technologies, which
provided us with a number of advantages:

• A common standardized model is used to describe cloud and testbed infrastructures. The

extensibility of this model is built into it from the start in the form of additional ontologies

that describe new types of resources. The machinery to deal with extensions is built into

standard semantic web toolkits, leaving the designers free to think about the information

model while affixing the data model.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 104 of 166

• Different resources and descriptions easily can be related and connected semantically.

Semantic web mechanisms intuitively represent computer network graph structures.

Network topologies are embedded into the RDF graph using graph homeomorphisms and

then are annotated with additional information, addressing structural and semantic

constraints in a single structure.

• Model errors can be detected early, before testbed resources are provisioned, by using

many standard inference tools.

• Rules can in particular be used to complement queries. Rules for harmonizing

relationships should to be defined and applied on the federation level. This is where

specialties and commonalities of the involved testbeds are known and this approach lifts

the burden from users to formulate complex queries.

• The annotation process, i.e., the conversion from XML-based RSpecs to RDF-based

graphs, is automatic and configurable to take testbed specific extensions and federation-

wide agreements into account.

• Using standard Semantic Web tools, complex queries can be formulated to discover

resources. A common way for testbeds to operate is by ingesting JSON/XML or other

encoding of the user request or resource advertisement and then converting it into a non-

portable native form on which queries and embeddings are performed. Semantic web

tools allow us to store testbed-state information natively in RDF and to operate on that

information using a multitude of native inference and query tools, thus simplifying and

abstracting many parts of testbed operations.

• Once cloud resources are described semantically, they can be interlinked to other Linked

Open Data (LOD) [7] cloud data sets. These linkages provide additional information about

resource availability or constraints and help to link resources, e.g., to policies governing

their allocation.

• Semantic resource descriptions support convergence from multiple syntactic-schema

based representations of testbed resources to a single semantically enriched

representation that combines information from multiple sources. Such sources include

various RSpecs describing testbed resources, out-of-band knowledge that may be

encoded in resource names or contained in human-readable online Web pages, an

approach consistent with Ontology-based Data Access (OBDA). Encoding this

information in a structured way into a single representation prepares it for direct analysis,

without need of an intermediate representation. Answers are derived by matching

resources required by the user to those available at one or more different testbeds,

federating the testbeds automatically, with minimal human intervention.

We believe that our approach represents an interesting application of OBDA to a novel area
of use that combines information search and retrieval with active infrastructure-resource
management.

The OMN development effort consisted of several phases, starting with the upper ontology
design, followed by the design of several critical subordinate ontologies for, e.g., resource
monitoring. We relied heavily on previous work in this area, directly incorporating, for instance,
the Infrastructure and Network Description Language (INDL) [8,9] ontology for describing

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 105 of 166

computer networks and the Networking innovations Over Virtualized Infrastructures (NOVI)
[10] ontology for federated infrastructures. We then started developing tools that utilize the
ontology, including converters from the various testbed resource description formats to OMN,
inference rules for knowledge extension to complement the conversion process, and rule sets
for semantic validation of the documents. We also developed standard queries that assist the
testbed resource-matching algorithms in extracting needed information from the testbed
resource descriptions.

The remainder of the section is structured as follows. We give a brief overview of related work
in the context of (federated) heterogeneous computing infrastructures in Section 10.2. In
Section 10.3, we present the OMN ontology set. Section 10.4 shows how we extract
information from RSpecs and annotate it using additional knowledge extraction from out-of-
band information. Querying and validation using traditional semantic web stools are then
performed by the tools built on this framework. Section 10.5 shows the performance and
applicability of our tools. Finally, we close in Section 10.6 with conclusions, considerations,
and a description of future work. Section 10.7 has a list of abbreviations and 10.8 a list of
references. The last section 10.9 describes how this will be used in matchmaking capabilities
for WP4.

10.2 RELATED WORK

Many application disciplines shifted the focus from tree-based data models (e.g., XML-based
syntactic schemas) to semantic models. This change is reflected in development of ontologies
to support, for example, the operation of Grids, Clouds, and now the Internet of Things. These
efforts have informed our own OMN development. In the coming section, we provide an
overview of these efforts.

10.2.1 Semantic Models For Grids, Clouds and IoT

In the context of Grid Computing, the Grid Laboratory for a Uniform Environment (GLUE) [11]
schema was started 15 years ago to support interoperability between Grid projects by defining
a schematic vocabulary with serializations to XML, LDAP, and SQL [12]. A lack of formalism
and a consequent inability to perform logical operations on data motivated the transition to
Semantic Open Grid Service Architecture (S-OGSA) [13].

Semantic Web service discovery [14,15] addresses the automated discovery of Web services
that satisfy given requirements. The discovery process uses a matchmaking algorithm to find
potential Web services that might solve the problem at hand. Such methods, however, are
inadequate to handle the complex interconnected computing infrastructures addressed by our
work. Research on matching concentrates mainly on Web services [16], specifically, on
semantic similarities between input and output parameters of various services. Our resource-
matching involves more than matching available resources to the requirements of the end-
user. We also need to identify homeomorphic embeddings of requested topologies within
available resource topologies. The combination of such semantic and structural constraints
leads to a substantially greater challenge. Pedrinaci et al. introduced Linked USDL (Linked
USDL) [17], a vocabulary that applies research conducted on Semantic Web services to USDL
[18,19]. Linked USDL provides comprehensive means to describe services in support of
automated processing. It focuses only on services, and is unsuited to the description of cloud

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 106 of 166

infrastructures. Ontologies such as the Semantic Markup for Web Services (OWL-S) [20] or
Good Relations (GR) [21], however, are of interest to our work, and are referenced in part in
our ontology.

In the domain of Cloud Computing, researchers are working to ensure interoperability on a
semantic level. Since 2008, work has progressed in the development of ontologies and of tools
for semantic cloud computing [22–24]. Haase et al. [25], for example, introduced an approach
to administration of enterprise cloud environments, using semantic Web technologies. They
proposed a Semantic Web-based product called eCloudManager, which incorporates an
ontology to model its cloud data. However, the system and its ontology only focus on the
management aspect of cloud systems, and the data are not open for usage. In another
example, Haak et al. [26] proposed an ontology-based optimization methodology that enables
cloud providers to detect the best resource set to satisfy a user’s request. Their framework
handles only a single administrative domain, whereas we seek to cover a distributed set of
provider domains.

A paradigm shift is in progress in favor of Intercloud Computing. For instance, 20 approaches
to this new challenge are presented in [27]. Within this context, Manno et al. proposed the use
of the semantic Federated Cloud Framework Architecture (FCFA) [28] to manage resource life
cycles based on formal models. In contrast, the Intercloud architecture developed within the
Institute of Electrical and Electronics Engineers (IEEE) Standard for Intercloud Interoperability
and Federation (P2302) [29,30] Working Group uses graphs to describe and to discover cloud
resources based on the existing Open-Source API and Platform for Multiple Clouds (mOSAIC)
[31] ontology. Both approaches are being considered as domain-specific extensions to our
work. In addition, Santana-Pérez et al. [32] proposed a scheduling algorithm that was suitable
for federated hybrid cloud systems. The algorithm applies semantic techniques to scheduling
and to matching tasks with the most suitable resources. The information model is based on
the Unified Cloud Interface (UCI) project ontologies, which cover a wide range of details but
which cannot handle Intercloud systems. Le and Kanagasabai [33,34] also proposed ontology-
based methodologies to discover and to broker cloud services. They use Semantic Web
technologies for user requirements and for cloud provider advertisements, and then apply an
algorithm to match each requirement list to advertised resource units. Multiple levels of
matching are defined, ranging from an exact match to no match. These methodologies
concentrate only on Infrastructure as a Service (IaaS) provisioning. Moreover, they typically
neither export their data nor provide a SPARQL Protocol And RDF Query Language
(SPARQL) [35] endpoint, thereby hindering reuse of and access to data.

Interest has soared recently in the uses and challenges of the Internet of Things in which many
heterogeneous devices from different administrative domains communicate with each other.
Semantic models are needed for the IoT. The European Research Cluster on the Internet of
Things (IERC) has established Activity Chain 4—Service Openness and Interoperability
Issues/Semantic Interoperability (AC4) [36], and semantic models such as the Semantic
Sensor Network (SSN) [37] ontology have been developed. Support for semantics in Machine-
To-Machine Communication (M2M) [38] has received further attention [39]. The primary
applicable standardization activity from the European Telecommunications Standards Institute
(ETSI) M2M Working Group has identified the need for a semantic resource descriptions in
[40]. The successor, oneM2M (http://onem2m.org) [41], already has established the OneM2M
Working Group 5 Management, Abstraction and Semantics (MAS). With the recent
establishment of the World Wide Web Consortium (W3C) Web of Things (WoT) [42] Working
Group, semantic vocabularies will be developed to describe data and interaction models.

http://onem2m.org/
http://onem2m.org/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 107 of 166

10.2.2 OMN Background

Development of our approach, the OMN ontology set, started within the Federation for FIRE
(Fed4FIRE) [43] project. The aim was to extend and to harmonize related work for the FIRE
initiative, which has been developed within the context of federated networks and e-
infrastructures. Our main motivation was the state of the art in the Future Internet (FI)
experimentation context, which considers only simple schema-based models. The Slice-based
Federation Architecture (SFA) [44] is the de-facto standard Application Programming Interface
(API) for testbed federation. It uses XML-based RSpecs to describe, to discover, and to
manage resources in a simple declarative way. However, it cannot support complex queries
combining structural and semantic constraints or knowledge analysis. OMN ontology design
reuses concepts previously defined in RSpecs, but also leverages significant prior efforts to
define ontologies targeting cyber-infrastructure management.

The Open Grid Forum (OGF) Network Mark-Up Language (NML) [45] is a well established
ontology for modeling computer networks. It provides a framework for definition and
description of topologies ranging from simple networks comprising a few nodes and
connections to massive, complex networks with hundreds or thousands of nodes and links.
The model underwent a thorough review and definition process, finally becoming an OGF
standard. While NML lacks concepts and properties required to describe federated
infrastructures, OMN adopts NML in order to model the networking aspects of the
infrastructure.

In comparison with NML, the INDL addresses virtualization of resources and services. It
supports description, discovery, modeling, composition, and monitoring of those resources
and services. The INDL actually imports NML to describe attached computing infrastructures
in a manner that is independent of technology and vendor. It offers the capacity to extend
coverage to emerging network architectures. The INDL, however, does not support
infrastructure federation, in which several different testbeds are interconnected experimentally.

Semantic models developed within the European NOVI and GEYSERS [46] projects have
been used to describe federated infrastructures, user requests, policies, and monitoring
information. They also support virtualization concepts for computing and networking devices.
They have been adopted by OMN where their incorporation is appropriate. In the first project,
the proposed Information Modeling Framework (IMF) [47] represents resources from the same
or from different infrastructure providers.

In parallel to this, within the GENI initiative, the Network Description Language based on the

Web Ontology Language (NDL-OWL) [48–51] model specifies capabilities to control and to

manage complex networked testbed infrastructures. Lessons learned from live deployments

of NDL-OWL in GENI proved informative in OMN modeling discussions.

Efforts related to describing APIs via OWL-S or DAML-S are not applicable directly to our
problem, since they focus on the description of Web-service APIs. The testbeds in our
research converged on a set of simple API calls like createSlice (requesting that a desired

network topology be created) or listResources (requesting information about available

infrastructure resources). The complexity lies in the parameters passed in those calls, not in
the diversity of types of parameters serving as inputs or outputs to the APIs. Those parameters
often are represented by XML documents describing requested or available testbed resource
topologies. Our goal is to replace those syntactic-schema-based representations with

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 108 of 166

semantic-web based views. We want them to include enough information to support native
querying based on both structural and semantic constraints, either by the users or by testbed
management algorithms.

10.3 OPEN-MULTINET ONTOLOGY SET

Following Noy and McGuiness [52], the first step for defining a formal information model is to
determine the specific domain and scope of the proposed ontology. As stated in the previous
sections, the initial objective was to support resource management in federated infrastructures
for experimentation. The related phases to this management effort are depicted in Figure 54.
Each step embodies a wide range of requirements and challenges. We particularly highlight
the first phase in this section; however, our approach was to provide a hierarchical set of
ontologies to cover the whole resource life-cycle.

Figure 54: The experiment life-cycle phases and protocols

10.3.1 Design

After identifying the scope of the reusable work (cf. Section 10.2), we have defined the
significant concepts and properties. Consequently, our ontology bundle consists of nine
ontologies, specifically the omn upper ontology and eight descendant ontologies (cf. Figure

55): omn-federation; omn-lifecycle; omn-resource; omn-component; omn-service; omn-monitoring;

omn-policy; and domain-specific extensions called omn-domain-xxx.

Identity Management
Authorization

Trustworthiness

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 109 of 166

Figure 55: Open-Multinet ontology hierarchy

These ontologies can be used to describe formally a federation of e-infrastructures, including
types and attributes of resources as well as services available within the federation. Ontologies
also describe the life-cycle phases of usage. The various ontologies extend the upper OMN
ontology (solid lines), which contains common concepts used within the other models. To
describe concrete resources within a particular infrastructure, domain-specific ontologies
might need to be defined that use and extend selected subsets of the OMN ontologies (dotted
lines).

10.3.1.1 OMN Upper Ontology

The omn upper ontology defines the abstract terms required to describe federated

infrastructures in general.

It includes a set of classes representing concepts providing general terms to model federated
infrastructures, along with their respective components and services. These concepts are as
follows:

• Resource: a stand-alone component of the infrastructure that can be provisioned, i.e.,

granted to a user such as a network node.

• Service: is a manageable entity that can be controlled and/or used via either APIs or

capabilities that it supports, such as a SSH login.

• Component: constitutes a part of a Resource or a Service, such as a port of a network node.

• Attribute: helps to describe the characteristics and properties of a specific Resource, Group,

Resource, or Component, such as Quality of Service (QoS).

• Group: is a collection of resources and services, for instance, a testbed or a requested

network topology logically grouped together to perform a particular function.

• Dependency: describes a unidirectional relationship between two elements such as

Resource, Service, Component, or Group. It may define, for example, an order in which

particular resources need to be instantiated: first, a network link, and then, the compute

nodes attached to it. This class opens up the possibility of adding more properties to a

dependency via annotation.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 110 of 166

• Layer: describes a place within a hierarchy to which a specific Group, Resource, Service, or

Component can adapt. Infrastructure resources naturally fall into layers, with resources at

higher layers requiring presence of resources at lower layers in order to function.

• Environment: the conditions under which a Resource, Group, or Service is operating, as in,

e.g., concurrent virtual machines.

• Reservation: a specification of a guarantee for a certain duration. Hence, it is a subclass of

the ”Interval” class of the W3C Time ontology [53].

The OMN upper ontology has 23 properties, of which the following are the most significant:

• hasAttribute: the Attribute associated with a Component, Resource, Service, or Group; e.g.,

CPU speed, or uptime.

• hasComponent: links a Component , Resource, or Service to its subcomponent.

• hasGroup: connects a Group to its subgroup; it is the inverse of isGroupOf.

• hasReservation: relates Group, Resource or Service to its Reservation.

• hasResource: declares that a specific Group has a Resource.

• hasService: declares that a Group, Resource or Service provides a Service.

• withinEnvironment: defines the ”Environment” in which a Group, Resource, Service, or

Component operates. An example of environment is the operating system under which a

resource works.

To support rich querying and inferences, inverse counterparts have been declared for most
properties. Figure 56 illustrates the key concepts and properties of the OMN ontology.

Figure 56: The key concepts and properties of the omn upper ontology

10.3.1.2 OMN Federation

A crucial part of the developed ontology set is the formal description of the relationship
between the involved e-infrastructures (see Figure 57: Open-Multinet (OMN) Federation
OntologyFigure 57). This allows to describe how resources relate to each other from the

 rdf:type owl:Class

rdf:type owl:DatatypeProperty
rdf:type owl:ObjectProperty

 owl:Thing

 xsd:
anyURI xsd:

boolean

omn:Resource

omn:Service

omn:Component

omn:Layer

omn:Environment

omn:Attribute

omn:Dependency omn:Reservation

omn:Group

omn:Topology

omn:fromDependency

owl:unionOf

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 111 of 166

highest organizational level and depicts the starting point to discover capabilities and offered
services. Federated providers maintain their autonomy in making resource-allocation
decisions; however, they inter-operate with some federation-level functions, such as identity
management or resource advertisement. To model these aspects, the omn-federation ontology

introduces the concepts of a Federation, FederationMember, and Infrastructure, along with

properties hasFederationMember and isAdministeredBy. The first two are subclasses of the

schema:Organization class, which allows them to be described by properties of the Schema
vocabulary. The latter concept relates infrastructures to a federation or to its members, and
finally subclasses the Group concept which allows infrastructures to expose services with

endpoints, such as an SFA Aggregate Manager (AM).

10.3.1.3 OMN Life Cycle

Another important ontology is the omn-life cycle, which addresses life-cycle management of a

collection of resources and services (e.g., a requested network topology) that are grouped
together to perform a particular function (e.g., to conduct an experiment or to deploy a service
architecture). The life-cycle of the resources is described by a set of allocation and operational
state changes such as

Allocated, Provisioned, Unallocated, Pending, Ready, Started, and Stopped. The life-cycle of the

collection of resources reflects the first four phases of Figure 54:

1. the infrastructure provider advertises an Offering describing the available resources;

2. the user forms a Request defining the required collection of resources to the infrastructure

provider;

3. the Confirmation contains an agreement by the provider, termed bound (tied to a specific

set of physical resources) or unbound, to provide the requested resources;

4. and, finally, a Manifest describes the provisioned resources and their properties.

Each of these stages is represented as a subclass of the Group concept.

omn:
Infrastructure

omn:
Federation

schema:
Organization

rdfs: subClassOf

omn:
FederationMember

rdfs: subClassOf

omn: isAdministeredBy

omn: partOfFederation

owl: inverseProperty

owl: inverseProperty

omn: hasFederationMember

omn: administers

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 112 of 166

Figure 57: Open-Multinet (OMN) Federation Ontology

10.3.1.4 OMN Monitoring

It describes the main concepts and relations to support monitoring services within federated
infrastructures. It includes, therefore, multiple classes and properties that define measurement
Metrics, their Data, Unit, Tool, and further Generic-Concepts. The monitoring ontology therefore

comprises an upper-level ontology. It describes the common, basic concepts and properties,
which then are reused and specialized in the subjacent ontologies.

10.3.1.5 OMN Resource

The OMN Resource ontology deals with the networking aspect of the infrastructure. It supports
the creation of complex networks of interconnected resources. It include concepts and
properties, e.g., Node, Link, and IPAddress, which are required for defining complex networks.

It also supports defining single or bi-directional links, which can be utilized for defining the
direction of packet flow across the link(s).

10.3.1.6 OMN Component

This ontology describes any entity that is part of a Resource or a Service; however, in itself, it is

not a Resource or a Service. The OMN Component ontology describes concepts that are

subclasses of the Component class defined in the OMN Upper ontology. It covers several

classes to describe a set of basic entities in any Information and Communication Technology
(ICT) infrastructure such as CPU, and Memory. Any class or instance of these can be the range

of the property hasComponent that has a Resource, Service, or even another Component as a

domain.

10.3.1.7 OMN Service

This ontology deals with ICT services. Any entity that delivers a value for its user is considered
by the OMN Service ontology as a service. Examples can be services that offer APIs or login
capabilities such as SSH. This ontology includes a set of classes to describe those services
being used in ICT infrastructures. The current version covers a set of services being used and
implemented by OMN ontology within the context of the application area addressed in this
section, namely the FI experimentation.

10.3.1.8 OMN Policy

This ontology will cover policy-related concepts and relations. We consider the NOVI policy
ontology as a starting point for its design, as it supports [10]:

• Authorization policies that specify authorization rights of users within the federation.

• Event-condition-action policies that enforce control and management actions upon certain

events within the managed environment.

• Role-based-access control policies that assign users to roles, with different

permissions/usage priorities on resources.

• Mission policies that define inter-platform obligations in a federation.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 113 of 166

10.3.1.9 OMN Domain Specific

OMN provides a way to define domain-specific ontologies, which customize the definition of
concepts and relations for a particular ICT application. This allows a set of concepts and
relations that are specific to a particular domain to be grouped along with some concepts and
relations from other OMN ontologies to form a domain-specific ontology. Examples of these
ontologies include, for instance, OMN Wireless ontology and OMN Cloud ontology, used to
define the behavior of wireless networks and of cloud infrastructures, respectively. Another
example includes the specification of an operating system (OS) version within a disk image,
using omn-domain-pc:hasDiskimageVersion.

10.3.2 Use of Existing Ontologies

As described in 10.2 the OMN ontology set is inspired by and based on a number of

existing formal information models. As an indicator, in Listing 1 a list of referenced

vocabularies are shown that are used within the upper OMN ontology. An OMN Service, for

example, has relationships to novi:Service, dctype:Service, gr:ProductOrService, service:Service,

schema:Service, nml:Service, and owl-s:Service.

Listing 1: Used ontologies within omn.ttl

10.3.3 Implementation

We selected OWL2 to encode the OMN ontology suite due to its expressiveness, wide
acceptance, and available tools. To ensure quality, changes to the ontologies are
automatically checked using Apache Jena Eyeball inspectors; other validators such as the
OntOlogy Pitfall Scanner (OOPS) [54] are executed manually.

@prefix : <http://open−multinet.info/ontology/omn#> .
@prefix cc: <http://creativecommons.org/ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix nml: <http://schemas.ogf.org/nml/2013/05/base#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix indl: <http://www.science.uva.nl/research/sne/indl#> .
@prefix move: <http://www.ontologydesignpatterns.org/cp/owl/move.owl#> .

@prefix novi: <http://fp7−novi.eu/im.owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix vann: <http://purl.org/vocab/vann/> .
@prefix voaf: <http://purl.org/vocommons/voaf#> .

@prefix color: <http://geni−orca.renci.org/owl/app−color.owl#> .
@prefix owl−s: <http://www.daml.org/services/owl−s/1.0DL/Service.owl#> .
@prefix dctype: <http://purl.org/dc/dcmitype/> .
@prefix schema: <http://schema.org/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix service: <http://purl.org/ontology/service#> .

@prefix collections: <http://geni−orca.renci.org/owl/collections.owl#> .

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 114 of 166

As part of the design process we are taking steps to ensure the broadest possible
dissemination of the ontologies. As a result, we are using Dublin Core (DC), Vocabulary for
Annotating Vocabulary Descriptions (VANN), and Vocabulary of a Friend (VOAF) vocabularies
to describe the associated meta information. We are publishing the files by following best
practices (http://www.w3.org/TR/swbpvocab-pub/). The URL http://open-
multinet.info/ontology/omn provides both a human-readable documentation and machine-
readable serializations. We have registered the permanent identifier https: //w3id.org/omn and
published the root ontology to the Linked Open Vocabulary (LOV) repository

(http://lov.okfn.org/dataset/lov/vocabs/omn). Additionally, we have registered the omn name

space (http://prefix.cc/omn). The source code of, and an issue tracker for, the ontologies are
publicly available (https://github.com/w3c/omn).

In order to make the work recognizable to the international community, we established the
Open-Multinet Forum, which is named after the ontology, and created the W3C OMN
Community Group (https://www.w3.org/community/omn).

10.4 INFORMATION QUERYING AND VALIDATION

10.4.1 DBcloud Application For Federated Experimental Infrastructures

Most of the requirements for the development of OMN are rooted in research issues within the
life-cycle management of resources across federated experimental infrastructures. In such a
distributed environment, resource discovery is highly constrained, as it is based on (multi-)
attribute matching. It requires an increased level of coordination between users and
infrastructure providers as well as among infrastructure providers in the federation. For this
purpose, we essentially propose a federation-wide knowledge layer over the federated
infrastructures to support semantic representation of such information and to facilitate
semantic-based resource discovery.

A large amount of semistructured information is available describing the GENI and FIRE
testbed federations, including details about the testbeds involved and about the
heterogeneous resources offered, reservation information, and monitoring data. This
information is encoded mainly as human-readable text on websites as well as in the forms of
JSON and XML trees via secured API calls. To extract this information and to make it
semantically accessible on the Web, we previously introduced the OMN extraction framework
[4].

In essence, the OMN extraction framework (Figure 58) follows the design of the DBpedia
extraction framework [55]. Information is retrieved from the infrastructures, calling periodically
according to methods of the SFA AM API
(http://groups.geni.net/geni/wiki/GAPI_AM_API_V3_DETAILS). The downloaded documents
are translated into a semantically annotated Resource Description Framework (RDF) [56]
graph using the OMN translator and the OMN ontology suite. To extend the knowledge encoded

in this graph, the Apache Jena inference engine is used within this process by applying
infrastructure-specific rules.

http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://open-multinet.info/ontology/omn
http://open-multinet.info/ontology/omn
https://w3id.org/omn
https://w3id.org/omn
http://lov.okfn.org/dataset/lov/vocabs/omn
http://lov.okfn.org/dataset/lov/vocabs/omn
http://lov.okfn.org/dataset/lov/vocabs/omn
http://prefix.cc/omn
http://prefix.cc/omn
http://prefix.cc/omn
https://github.com/w3c/omn
https://github.com/w3c/omn
https://www.w3.org/community/omn
https://www.w3.org/community/omn
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3_DETAILS
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3_DETAILS

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 115 of 166

Finally, the resulting knowledge graph is written in an in-memory triplet database (Sesame
v.2.8.6) and in a Turtle (TTL) [57] serialized file (DBcloud Dump). A SPARQL endpoint on top
of the triplet data store implements a federation-wide lookup service that enables resource
discovery by end-users. The result is currently available at http://lod.fed4fire.eu using, among
others, the Vocabulary of Interlinked Datasets. The knowledge base currently describes
approximately 100 aggregates, 3000 nodes, 30,000 links, and about 25,000 interfaces. This
consists of 4.1 million statements, with the potential to grow substantially as new testbeds join
the federation.

The OMN translator is a Java-based extensible translation mechanism introduced in [2],

allowing the automated transformation of semi-structured data into an OMN based knowledge
graph.

It translates statelessly between GENI, Resource Specifications (RSpecs), and OMN; applies
inferencing rules for validation and knowledge injection; and has been extended to support
Topology and Orchestration Specification for Cloud Applications (TOSCA) [58] and Yet
Another Next Generation (YANG) [59] data models as well.

Figure 58: OMN extraction framework and lookup service (based on [4,55])

The implementation of the translation tool follows a Test Driven Development (TDD)

approach, is included in a Continuous Integration (CI) environment with test coverage

analytics, and is offered as a Java-based open-source library (“omnlib”) in a public maven

repository. It uses the Java Architecture for XML Binding (JAXB) and Apache Jena to map

between XML, RDF, and Java objects. It supports a number of APIs: (i) a native API to be

included in other Java projects; (ii) a CLI to be used within other applications; and (iii) a

REST-based API to run as a Web service.

The OMN translator parses the XML tree and converts the tags and attributes to their

corresponding classes or properties. To give a better understanding of this translation process,
we provide an illustrative example for the conversion of a GENI Advertisement RSpec used to
publish available resources within a federation of experimental infrastructures.

The example in Listing 2 shows a single node of type PC that can provision the sliver type

GENI

federation

Fed4FIRE
federation

mapping
rules &

metadata

Triplet
Database

DBcloud
Dump

Triplet
Database

http://lod.fed4fire.eu/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 116 of 166

PLAB-VSERVER (virtual server for PlanetLab). Traditionally, hardware type and sliver type used

to be simple strings, but unique Uniform Resource Identifiers (URIs) are used here to provide
machine-interpretable information.

Listing 2: RSpec Advertisement (excerpt)

Listing 3 shows the converted graph, serialized in Turtle. The overall approach is to define an
omn:Topology (the subclass omn-lifecycle:Offering is used in this case) that contains pointers to

the offered resources. Each resource is an individual of a specific type that can implement (i.e.,

can provision) one or more specific sliver types.

Listing 3: OMN Offering

<rspec xmlns="http://www.geni.net/resources/rspec/3" type="advertisement">
<node component_manager_id="urn:publicid:IDN+ple+authority+cm"

component_id="urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr"
exclusive="false" component_name="stella.planetlab.ntua.gr"> Node Name
<hardware_type name="http://open−multinet.info/ontology/resources/pc#PC"/> Hardware Type
<sliver_type name="http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER"/> Provisions Sliver Type
<available now="true"/>

</node>
</rspec>

<urn:uuid:7eb7b551−7566−4d3c−ac5f−f41a63236baa> Offering
a <http://open−multinet.info/ontology/omn−lifecycle#Offering> ;
<http://www.w3.org/2000/01/rdf−schema#label> "Offering" ;
<http://open−multinet.info/ontology/omn#hasResource> <urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr> .

<urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr> a

<http://open−multinet.info/ontology/omn−resource#Node> ,
<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ,
<http://open−multinet.info/ontology/resources/pc#PC> ;

<http://www.w3.org/2000/01/rdf−schema#label>
"stella.planetlab.ntua.gr"^^<http://www.w3.org/2001/XMLSchema#string> ;

<http://open−multinet.info/ontology/omn#isResourceOf>
<urn:uuid:7eb7b551−7566−4d3c−ac5f−f41a63236baa> ;

 <http://open−multinet.info/ontology/omn−lifecycle#canImplement> Implements Sliver Type
<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ;

<http://open−multinet.info/ontology/omn−lifecycle#hasComponentName> "stella.planetlab.ntua.gr" ;
<http://open−multinet.info/ontology/omn−lifecycle#managedBy>

<urn:publicid:IDN+ple+authority+cm> ;

<http://open−multinet.info/ontology/omn−resource#hasHardwareType> Node Hardware Type

<http://open−multinet.info/ontology/resources/pc#PC> ;
<http://open−multinet.info/ontology/omn−resource#hasSliverType>

<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ;
<http://open−multinet.info/ontology/omn−resource#isAvailable> true ;
<http://open−multinet.info/ontology/omn−resource#isExclusive> false .

<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> a

<http://open−multinet.info/ontology/omn−resource#SliverType> ;
<http://open−multinet.info/ontology/omn−lifecycle#hasSliverName>

"http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER" .

<http://open−multinet.info/ontology/resources/pc#PC> a

<http://open−multinet.info/ontology/omn−resource#HardwareType> ;
<http://www.w3.org/2000/01/rdf−schema#label>

"http://open−multinet.info/ontology/resources/pc#PC" .

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 117 of 166

10.4.2 Knowledge Extension and Information Querying

Having described the framework for semantic-based resource discovery in the context of
federated experimental infrastructures, we will now focus on the specifics of the discovery
process. Given a user request (query) and the aforementioned knowledge base, the resource-
discovery problem amounts to automatically finding the resources from the triplet data store
that match the query requirements along with policies set by infrastructure providers, since a
request can be expressed at different levels of abstraction (Resource Matching). The adoption

of the OMN ontology suite provides the necessary flexibility of expression as well as tools for
querying and inference that simplify the typical problems encountered in the process of
resource matching. Rules can capture domain background knowledge or infer resource
requirements from the request model; specifically regarding the latter these are added as
additional information to the initial request model. In addition, they can be used to check the
request model’s validity [49]. These benefits are highlighted in the following text.

10.4.2.1 Knowledge Extension

Background knowledge captures additional knowledge about the domain. This information can
be used in matching a request with available resources. Knowledge is expressed in terms of
rules that use the vocabulary of the ontology to add axioms. The knowledge graph can be
extended by applying such rules.

For example, infrastructure providers in the federation do not advertise explicitly the hardware
configurations of their resources in the RSpec XML documents provided. Such data are not
translated into RDF. Instead, the information is encoded in each resource’s hardware type,

arbitrarily set by the infrastructure provider as highlighted in the advertisement excerpt
provided in Listing 2, (i.e., hardware type: PC).

In Table 9, we provide sample hardware specifications for a subset of the federated
experimental infrastructures as they are described by the corresponding infrastructure
providers, namely, NETMODE (http://www.netmode.ntua.gr/testbed) and Virtual Wall 2
(http://doc.ilabt.iminds.be/ ilabt-documentation/virtualwallfacility.html) testbeds.

Table 9: Resource specifications

HW Type Description

alix3d2 500 MHz AMD Geode LX800, 256 MB DDR DRAM, 1 GB flash card

storage
pcgen3 2x Hexacore Intel E5645 (2.4 GHz) CPU, 24 GB RAM, 250 GB harddisk

Figure 59 depicts a rudimentary offering (advertisement) excerpt from the NETMODE

infrastructure provide. For the sake of readability, only a single advertised resource is depicted
(omf.netmode.node1). Moreover, the diagram does not show all the details of the resource

description, although it identifies the distinct OMN ontologies used for this purpose, in the
upper part the figure. In the excerpt provided the offered resource omf.netmode.node1 is

managedBy the infrastructure provider omf:netmode (AMService) and is part of (isResourceOf) the

offering (advertisement) identified by urn:uuid:c9c34c9c-08d6-4dc6-91e2-2e5fac9dd418. The

resource is related via the object property hasHardwareType to the HardwareType individual with

the label alix3d2. It is associated (hasSliverType) to the SliverType individual, with the label miniPC,

http://www.netmode.ntua.gr/testbed
http://www.netmode.ntua.gr/testbed
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 118 of 166

attributed with specific Disk Image properties (e.g., OS Voyage). As noted in this example,

infrastructures advertise node capacities by their hardware type name (alix3d2 in this case).

Figure 59: Partial NETMODE offering

A simple example of background knowledge on the context of the “hardware type” is provided
in Listing 4. The listing represents a subset of the rules used to expand the knowledge base
with CPU-related information regarding pcgen3 nodes listed in Table 9. Such information can

be used in the resource matchmaking process. In the specific application, it is the responsibility
of the federator, which maintains/provides the extraction framework, to apply such rules.

Listing 4: Infrastructure knowledge 1 (excerpt)

[rule1:
(?node omnres:hasHardwareType ?hwtype)
(?hwtype rdfs:label ?label) For every compute node with a hardware regex (?label , "pcgen0?3.*")

makeTemp(?cpuComp) type that has a label matching “pcgen0?3.*
−>
(?cpuComp rdf:type owl:NamedIndividual)
(?cpuComp rdf:type omncomp:CPU)
(?cpuComp rdfs:label "Intel E5645 CPU") Insert standard information about this node

(?cpuComp omn:hasModelType "Intel E5645")

(?cpuComp rdfs:label "Hexa Core Processor")
type: CPU Type, Core Count, CPU Frequency

(?cpuComp dbp:fastest "2.4"^^xsd:double)
(?cpuComp dbp:fastUnit <http://dbpedia.org/resource/GHZ>)
(?cpuComp omncomp:hasCores 6)

(?cpuComp dbp:arch <http://dbpedia.org/resource/X86−64>)

(?node omn:hasComponent ?cpuComp) Link new information to the compute node
]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 119 of 166

In our second example, shown in Listing 5, rules 1 to 3 mandate that each node identified by
hardware type alix3d2 have the hardware capacity described in Table 9 in terms of CPU,

memory, and storage. Rules 4 to 6 link this information to the node.

Listing 5: Infrastructure knowledge 2 (excerpt)

4.2.2. Information Querying

Having applied the rules in Listing 4, a user may make a request for cloud resources with, for
example, specific CPU requirements. In the sample SPARQL query provided in Listing 6, the
user submits a request for two virtual machines with a specific number of CPU cores and OS
type, e.g., Fedora:6cores. The results are shown in Listing 7.

Listing 6: SPARQL query 1

Listing 7: Query results
RESULTS
urn:publicid:IDN+wall2.ilabt.iminds.be+node+n095−05a

urn:publicid:IDN+wall2.ilabt.iminds.be+node+n096−02 TIME EXECUTION: 0.016sec

In a more complex example, a user may submit a request for two nodes running a Linux
distribution, with specific hardware requirements; e.g., 256MB of RAM and storage capacity greater
than 500 MB. The query is described in Listing 8. The resource-matching process is not

straightforward, as it was in the previous case, even if we apply the rules in Listing 5. In most
cases, Infrastructure Providers advertise the exact Linux Distribution (e.g., Voyage in Figure
6). Thus, the condition for Linux OS variant needs to be either incorporated into the request

requirements or advertised explicitly by the testbeds. We follow the first approach in this case;

[rule1: uriConcat(omncomp:,"alix3d2_mem", ?memComp) noValue(?memComp rdf:type owl:NamedIndividual)−> (?memComp

rdf:type owl:NamedIndividual)
(?memComp rdf:type omncomp:MemoryComponent)(?memComp omnmonunit:hasValue "256000000"^^xsd:integer)]
[rule2: uriConcat(omncomp:,"alix3d2_cpu", ?cpuComp) noValue(?cpuComp rdf:type owl:NamedIndividual)−> (?cpuComp

rdf:type owl:NamedIndividual)
(?cpuComp rdf:type omncomp:CPU) (?cpuComp omnmonunit:hasValue "500000000"^^xsd:integer)]
[rule3: uriConcat(omncomp:,"alix3d2_sto", ?stoComp) noValue(?stoComp rdf:type owl:NamedIndividual)−> (?stoComp

rdf:type owl:NamedIndividual)
(?stoComp rdf:type omncomp:StorageComponent)(?stoComp omnmonunit:hasValue "1000000000"^^xsd:integer)]
[rule4: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string) uriConcat(omncomp:,"alix3d2_mem",

?memComp) −> (?node omncomp:hasComponent ?memComp)]
[rule5: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string) uriConcat(omncomp:,"alix3d2_cpu",

?cpuComp) −> (?node omncomp:hasComponent ?cpuComp)]
[rule6: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string) uriConcat(omncomp:,"alix3d2_sto",

?stoComp) −> (?node omncomp:hasComponent ?stoComp)]

SELECT ?resource1 ?resource2 WHERE {

?resource1 rdf:type omnres:Node . Find me two hosts, resource1 and resource2
?resource2 rdf:type omnres:Node .
?resource1 omnres:hasSliverType/omndpc:hasDiskImage/omndpc:hasDiskimageOS ?os1.
?resource2 omnres:hasSliverType/omndpc:hasDiskImage/omndpc:hasDiskimageOS ?os2.

?resource1 omn:hasComponent ?cpuComp1. Both with 6 cores
?cpuComp1 rdf:type omncomp:CPU.

?cpuComp1 omncomp:hasCores ?cpuvalue1.FILTER (?cpuvalue1 = "6"^^xsd:integer).
?resource2 omn:hasComponent ?cpuComp2.

?cpuComp2 rdf:type omncomp:CPU.
?cpuComp2 omncomp:hasCores ?cpuvalue2.FILTER (?cpuvalue2 = "6"^^xsd:integer).

FILTER (xsd:string(?os1) = "Fedora"^^xsd:string). Both running Fedora
FILTER (xsd:string(?os2) = "Fedora"^^xsd:string).
FILTER (?resource1 = ?resource2)limit 1 ! ! Just one answer, please

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 120 of 166

additional rules are added to infer automatically the resource characteristics, e.g., acceptable
Linux distribution, without explicit statements needed from the user, as proposed in [60]. The
rule set is an appropriately defined set of axioms from which additional implicit information can
be derived. A sample rule used is provided in Listing 9 stating Linux compatibility (Voyage is
a Linux-variant OS).

Listing 8: Initial SPARQL query 2

Listing 9: IT background knowledge (excerpt)

Once the rules are applied, OR-AND clauses are built and added to the initial request [60].
Given the additional information injected into the graph, Listing 10 shows the new, expanded
SPARQL query, with OR-AND clauses included in Lines 22–25. The results are restricted to
one feasible matching solution, which is shown in Listing 11.

Listing 10: SPARQL query 2

SELECT ?node1 ?node2 WHERE {

?node1 rdf:type omn_resource:Node. Find me two hosts, node1 and node2

?node2 rdf:type omn_resource:Node.
?node1 omn:hasComponent ?memComp1.
?node2 omn:hasComponent ?memComp2.
?memComp1 rdf:type omn_component:MemoryComponent.
?memComp2 rdf:type omn_component:MemoryComponent.
?memComp1 omn_monitoring_unit:hasValue ?mvalue.

FILTER (?mvalue >= "256000000"^^xsd:integer) Both with RAM greater than 256 MB
?memComp2 omn_monitoring_unit:hasValue ?mvalue.

FILTER (?mvalue >= "256000000"^^xsd:integer)

?node1 omn:hasComponent ?stoComp1.
?node2 omn:hasComponent ?stoComp2.
?stoComp1 rdf:type omn_component:StorageComponent.
?stoComp2 rdf:type omn_component:StorageComponent.
?stoComp1 omn_monitoring_unit:hasValue ?svalue1.

FILTER (?svalue1 >= "500000000"^^xsd:integer) Both with disk storage greater than 500 MB
?stoComp2 omn_monitoring_unit:hasValue ?svalue2.

FILTER (?svalue2 >= "500000000"^^xsd:integer)

?node1 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os1. Both running Linux

?node2 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os2. FILTER

(xsd:string(?os1) = "Linux"^^xsd:string) FILTER (xsd:string(?os2) = "Linux"^^xsd:string)
FILTER (?node1 = ?node2)LIMIT 1

[rule7:(?node rdf:type omn−resource:Node)
(?node omn−resource:hasSliverType ?stype)
(?stype omn−domain−pc:hasDiskImage ?dimage)
(?dimage omn−domain−pc:hasDiskimageOS "Voyage"^^xsd:string) −>
(?dimage omn−domain−pc:hasDiskimageOS "Linux"^^xsd:string)]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 121 of 166

Listing 11: Query results

10.4.3 Validation

Documents created using OMN vocabularies can be validated semantically in part by using
traditional OWL entailments, which verify that the domains and ranges of properties used in a
particular model match those defined in the vocabulary. We found, however, that the
expressivity of those mechanisms was not always sufficient to validate the user requests being
sent to the testbed. Procedural verification is not portable. It is hard to ensure correctness and
consistency across implementations. To supplant traditional OWL mechanisms, we developed
Datalog rule-sets that trigger inference errors when processing a document that either lacks
specific information or is semantically ambiguous. In this section, we explore several examples
of such rules.

For instance, if a user is attempting to request a network connection that loops to the same
node on which it started, a request may be represented by a valid OMN model; however,
semantically, it doesn’t make sense to the resource-matching algorithm that is attempting to
reproduce the topology. To guard against cases like this, we validate the user’s request using
the following Datalog rule in Listing 12.

Listing 12: Validating self-looping links in requests

SELECT ?node1 ?node2 WHERE {

?node1 rdf:type omn_resource:Node. Find me two hosts, node1 and node2

?node2 rdf:type omn_resource:Node.
?node1 omn:hasComponent ?memComp1.
?node2 omn:hasComponent ?memComp2.
?memComp1 rdf:type omn_component:MemoryComponent.
?memComp2 rdf:type omn_component:MemoryComponent.
?memComp1 omn_monitoring_unit:hasValue ?mvalue.

FILTER (?mvalue >= "256000000"^^xsd:integer) Both with RAM greater than 256 MB
?memComp2 omn_monitoring_unit:hasValue ?mvalue.

FILTER (?mvalue >= "256000000"^^xsd:integer)

?node1 omn:hasComponent ?stoComp1.
?node2 omn:hasComponent ?stoComp2.
?stoComp1 rdf:type omn_component:StorageComponent.
?stoComp2 rdf:type omn_component:StorageComponent.
?stoComp1 omn_monitoring_unit:hasValue ?svalue1.

FILTER (?svalue1 >= "500000000"^^xsd:integer) Both with disk storage greater than 500 MB
?stoComp2 omn_monitoring_unit:hasValue ?svalue2.
FILTER (?svalue2 >= "500000000"^^xsd:integer) Running Linux

?node1 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os1.

?node2 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os2.
Variant

FILTER (xsd:string(?os1) = "Voyage"^^xsd:string ||xsd:string(?os1) = "Fedora"^^xsd:string || xsd:string(?os1) = "Ubuntu"
^^xsd:string || xsd:string(?os1) = "Linux"^^xsd:string)
FILTER (xsd:string(?os2) = "Voyage"^^xsd:string ||xsd:string(?os2) = "Fedora"^^xsd:string || xsd:string(?os2) = "Ubuntu" ^^xsd:string ||

xsd:string(?os2) = "Linux"^^xsd:string)
FILTER (?node1 = ?node2)LIMIT 1

RESULTS
:node1=> <urn:publicid:IDN+omf:netmode+node+node18>,
:node2=> <urn:publicid:IDN+omf:netmode+node+node14>
TIME EXECUTION: 0.299sec

(?Z rb:violation error(’Connection Validation’, ’Connection cannot loop on itself’, ?Y))
<− (?X rdf:type pc:PC), (?X nml:hasOutboundPort ?P1), (?X nml:hasInboundPort ?P2),
(?Y rdf:type nml:Link), (?P1 nml:isSink ?Y), (?P2 nml:isSource ?Y)]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 122 of 166

In some requests by end-users, every Virtual Machine (VM) node must specify an OS

image to be booted. At the same time, a VM -server node does not need an image, since it

operates using only a pre-determined image. The pc : hasDiskImage property is defined for all

PC types, including VM Servers and VMs, so a cardinality restriction cannot be used in this

case. This request validation rule is expressed as follows in Listing 13.

Listing 13: Validating presence of OS image in VM requests
(?Z rb:violation error("Validating that VM nodes have OS images", ?R)) <− (?R rdf:type pc:VM), noValue(?R,

pc:hasDiskImage, ?I)

It is important to emphasize that the set of the rules that we use continues to evolve with the
schema and with the resource-matching algorithms used to allocate CI resources for the users.
For example, as the algorithms become more sophisticated, they are able to function without
some of the guards protecting them from poorly formed requests, reducing the need for some
rules. Nonetheless, the designing of resource-matching and of embedding algorithms in
testbeds is an active field of study. The availability of declarative rule-based semantic
validation significantly simplifies the continuing evolution of these algorithms by clearly
associating a particular algorithm with its own set of validation rules that prevent errant
executions and simplify the algorithm code.

10.5 PERFORMANCE EVALUATION

By adopting formal information models and semantically annotated graphs, our approach
allows operations to link, relate, enhance, query, and conduct logical manipulations of
heterogeneous data, all of which would be impossible otherwise.

One of the most important measure for the applicability of our work is the amount of time
required to translate and to query resources using our ontology. This time needs to range in a
practicable span for the given context. Our initial work [4] looked at the sizes of the
advertisements for testbeds in the FIRE and GENI projects and evaluated the performance of
the translation to RDF of the respective

XML files. The novel work we present in this section show a more comprehensive comparison
of the queries performance; namely, we look at the time needed to translate resource
information to the one needed to list resources, as well as the performance of queries of
different complexity.

We have analyzed the result of the ListResources method call of the 99 SFA AMs that are

monitored (https://flsmonitor.fed4fire.eu/) within the Fed4FIRE project. This list contains 82
valid XML based GENI RSpec replies with 762.634 XML elements in total, of which 3.043 are
Nodes, 31.155 are Links, and 25.493 Interfaces. Figure 60 shows the size of the RSpec

advertisements in the testbeds we considered.

https://flsmonitor.fed4fire.eu/
https://flsmonitor.fed4fire.eu/
https://flsmonitor.fed4fire.eu/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 123 of 166

Figure 60: Size distribution of RSpec Advertisements (logarithmic)

To estimate the time needed to translate the advertisements, the actual RSpecs from these
testbeds has been downloaded. The XML files were then translated to TTL serialized RDF
graphs using the OMN translator. Of great importance to the potential scalability of our
approach is the time taken for such translations, particularly with regard to the number of XML
elements involved. 100 Advertisement RSpecs had been extracted, of which six contained
errors, e.g., not adhering to the RSpec XML Schema Definition (XSD) file, and could not be
translated without manual changes. Tests were run on a MacBookPro with OS X Yosemite, a
2.8 GHz Intel Core i7 processor, and 8 GB of RAM. Running a translation over all correct
RSpecs produced median values of 24 milliseconds from XML to Java Architecture for XML
Binding (JAXB) and 20 milliseconds from JAXB to RDF, yielding a total median translation
time of 44 milliseconds from XML to RDF. As shown in Figure 61, translation times appear to
be roughly linearly correlated with the number of XML elements translated, with a median of
180 elements and a maximum of 159,372 translated. This linear correlation indicates upwards
scaling should be possible, although more data are required to confirm this point. At this stage,
no major limiting factors have been identified, and, given appropriate processing power,
translation should be possible in most foreseeable use cases.

0

5

10

15

10 1,000 100,000
XML elements [#]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 124 of 166

Figure 61: JAXB to RDF translation times versus number of XML elements [4]

To put the duration needed for the translation of an RSpec Advertisement into relation with the

duration of the underlying function call needed in the FI experimentation context, we quantified
the query and translation time for a single testbed. As indicated in Figure 60, about 95% of the
testbeds expose fewer than 20.000 XML elements; therefore, we have used the CloudLab
Wisconsin testbed (https://www.cloudlab.us), which exposes 19.371, for our measurements.
The results in Figure 62 show that the average translation time of 583 ms ± 9 ms (95% CI)
would add about 10% to the average response time of 5453 ms ± 131 ms (95% CI). This effect,
however, could be mitigated by translating in advance or by distributing the work load. The
delay of over 5 seconds for listing resources using a single API call, is influenced by mainly
two factors. First, the available bandwidth to transmit the resulting XML document from the
testbed to the caller. Second, the testbed internal communication architecture to gather the
required information, as CloudLab is a distributed infrastructure itself that is composed by three
different sites.

https://www.cloudlab.us/
https://www.cloudlab.us/
https://www.cloudlab.us/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 125 of 166

Figure 62: Listing/translating resource information

Assuming that a testbed accepts the potentially enhanced response time, in favor of the added
value of merging its information into a global linked data set, its resources can be found by
applying the aforementioned resource-matching queries. The translation of all available tree
data structures into an RDF-based graph, using our OMN vocabulary and rules, resulted in a
set of 2.911.372 statements. It builds the basis for our conclusion that adding further rules,
infrastructures, and other data sources will increase the potential for significant growth.

In Figure 63, the duration of Listing 10 against this graph is shown. To assess the performance
impact of the complexity of the query, it has been compared with a simpler one, which is shown
in Listing 14 together with its result in Listing 15. While finding the three largest aggregates
took on average 129 ms ± 3 ms (95% CI), the matching query took on average 168 ms ± 1 ms
(95% CI) and therefore took about 30% longer, yet much less time than a single ListResources
call in a single testbed. Finally, we have summarized our findings in Table 10.

●
●

●
●
● ● ● ● ● ● ● ● ● ●

Listing Resources Translating
operation [type]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 126 of 166

Figure 63: Performance comparison of queries

Listing 14: Finding the largest aggregate via query

SELECT (COUNT(?am) as ?fre) ?am WHERE {

?node omn−lifecycle:managedBy ?am .
} GROUP BY (?am) ORDER BY DESC (?fre) LIMIT 3

Listing 15: Largest aggregates

Table 10: Results of the performance evaluation

Median Duration [ms] Phase

24 Translation from XML to JAXB (on average)

20 Translation from JAXB to RDF (on average)
583 Translation of 19.371 XML elements

(CloudLab)
5453 Listing resources (CloudLab)
129 Querying three largest aggregates (Listing 10))
168 Matching resources (Listing 14)

?fre ?am
719 <urn:publicid:IDN+emulab.net+authority+cm>
326 <urn:publicid:IDN+utah.cloudlab.us+authority+cm>
255 <urn:publicid:IDN+ple+authority+cm>

● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ●
● ● ● ●
●
● ●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
● ●
● ●
●
●

●

●
●

●
●
●

matching resources finding largest aggregates
query [type]

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 127 of 166

10.6 CONCLUSION AND FUTURE WORK

The OMN set of ontologies that we presented in this article has been developed to support
resource management in federated and distributed computing infrastructures. OMN provides
a federation-wide knowledge layer that eases the process of resource selection and matching.

In this article, we described the OMN framework, which allows the extraction of underlying
information from tree-based data structures. It exposes this information in the form of OMN
triples to interested parties via the Web. DBcloud is an application developed in support of the
federation of experimental cyber-infrastructures which relies on OMN translators that
automatically transform semi-structured data into OMN graphs. An important aspect that we
have assessed is the performance of such translations, as this is crucial to OMN usability and
adoption. We have shown that the translation and query times require additional time (on the
order of 10% in our experiment), which, however, we expect to be acceptable to all resource
providers given the added value of merging information.

We have also shown how users can query OMN information that represents the resources
available in the underlying infrastructures and match them with their own computational
requirements. In such case, we evaluated the time needed to find matching resources. We
have shown that more complex queries complete within times that are acceptable to end-
users.

In the long run, we expect that our contributions will outlive the specific use case of the cloud
testbed resource management. We believe that it will be accepted by the broader community
of academic and commercial cloud providers. It will help to create an ecosystem of flexible,
extensible tools and mechanisms that will see the use of cloud platforms become even more
pervasive. We expect it to open up the marketplace to competing cloud providers, large and
small, catering to specific market niches. We are also promoting adoption of OMN in new
domains such as the Internet of Things (IoT). As a specific Industrial Internet of Things (IIoT)
[61] example, things, services and data can be connected between federated manufacturing
facilities. As an analog to the federation of testbeds the involved facilities, the digital factories,
their available APIs and services, have to be described formally to allow for matchmaking
capabilities required for the envisioned autonomous production within the fourth industrial
revolution. Our ontology set could act as a basis. Following discussions within the German
initiative Plattform Industrie 4.0 (PI4.0), linking information based on the LOD paradigm and
using interfaces such as the W3C WoT could build a technological base for implementing this
vision. Another focus area for the OMN ontologies is the integration with ontologies defining
data-access policies among cooperating entities that make use of the cloud infrastructures.
The support provided by OMN for the definition of complex usage of heterogeneous resources
will be the backbone for novel kinds of open data services, both in industrial and commercial
settings, as well as in the scientific community.

10.7 ABBREVIATIONS

The following abbreviations are used in this manuscript:

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 128 of 166

AC4 Activity Chain 4—Service Openness and Interoperability Issues/Semantic Interoperability
AM Aggregate Manager
API Application Programming Interface
DC Dublin Core
ETSI European Telecommunications Standards Institute
FCFA Federated Cloud Framework Architecture
Fed4FIRE Federation for FIRE
FI Future Internet
FIRE Future Internet Research and Experimentation
GENI Global Environment for Network Innovations
GLUE Grid Laboratory for a Uniform Environment
GR Good Relations
IaaS Infrastructure as a Service
ICT Information and Communication Technology
IEEE Institute of Electrical and Electronics Engineers
IERC European Research Cluster on the Internet of Things
IIoT Industrial Internet of Things
IMF Information Modeling Framework
INDL Infrastructure and Network Description Language
IoT Internet of Things
JAXB Java Architecture for XML Binding
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
LOD Linked Open Data
M2M Machine-To-Machine Communication
MAS OneM2MWorking Group 5 Management, Abstraction and Semantics
mOSAIC Open-Source API and Platform for Multiple Clouds
NDL-OWL Network Description Language based on the Web Ontology Language
NML Network Mark-Up Language
NOVI Networking innovations Over Virtualized Infrastructures
OGF Open Grid Forum
OMN Open-Multinet
OOPS OntOlogy Pitfall Scanner
OWL-S Semantic Markup forWeb Services
P2302 Standard for Intercloud Interoperability and Federation
PI4.0 Plattform Industrie 4.0
QoS Quality of Service
RDF Resource Description Framework
RSpec Resource Specification
S-OGSA Semantic Open Grid Service Architecture
SFA Slice-based Federation Architecture
SPARQL SPARQL Protocol And RDF Query Language
SQL Structured Query Language
SSH Secure Shell
SSN Semantic Sensor Network
TOSCA Topology and Orchestration Specification for Cloud Applications
TTL Turtle
UCI Unified Cloud Interface
URL Uniform Resource Locator
VANN Vocabulary for Annotating Vocabulary Descriptions

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 129 of 166

VOAF Vocabulary of a Friend
VoID Vocabulary of Interlinked Datasets
W3C WorldWide Web Consortium
WoT Web of Things
XML Extensible Markup Language
XSD XML Schema Definition
YANG Yet Another Next Generation

10.8 REFERENCES

1. Ashton, K. That ’Internet of Things’ Thing. RFID J. 2009, 6, 4986.

2. Willner, A.; Papagianni, C.; Giatili, M.; Grosso, P.; Morsey, M.; Al-Hazmi, Y.; Baldin, I. The open-multinet

upper ontology towards the semantic-based management of federated infrastructures. In Proceedings of the

10th EAI International Conference on Testbeds and Research Infrastructures for the Development of

Networks & Communities, Vancouver, BC, Canada, 24–25 June 2015; p. 10.

3. Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43.

4. Morsey, M.; Willner, A.; Loughnane, R.; Giatili, M.; Papagianni, C.; Baldin, I.; Grosso, P.; Al-Hazmi, Y.

DBcloud: Semantic Dataset for the cloud. In Proceedings of the 2016 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, 10–15 April 2016; pp. 207–

212.

5. Berman, M.; Chase, J.S.; Landweber, L.; Nakao, A.; Ott, M.; Raychaudhuri, D.; Ricci, R.; Seskar, I. GENI: A

federated testbed for innovative network experiments. Comput. Netw. 2014, 61, 5–23.

6. Gavras, A.; Karila, A.; Fdida, S.; May, M.; Potts, M. Future internet research and experimentation.

ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 89–92.

7. Bauer, F.; Kaltenböck, M. Linked Open Data: The Essentials; Edition Mono/Monochrom: Vienna, Austria, 2011.

8. Ghijsen, M.; van der Ham, J.; Grosso, P.; de Laat, C. Towards an infrastructure description language for

modeling computing infrastructures. In Proceedings of the 10th IEEE International Symposium on Parallel and

Distributed Processing with Applications, Madrid, Spain, 10–13 July 2012; pp. 207–214.

9. Ghijsen, M.; van der Ham, J.; Grosso, P.; Dumitru, C.; Zhu, H.; Zhao, Z.; de Laat, C. A Semantic-Web

Approach for Modeling Computing Infrastructures. Comput. Electr. Eng. 2013, 39, 2553–2565.

10. van der Ham, J.; Stéger, J.; Laki, S.; Kryftis, Y.; Maglaris, V.; de Laat, C. The NOVI information models.

Future Gener. Comput. Syst. 2015, 42, 64–73.

11. Andreozzi, S.; Burke, S.; Field, L.; Fisher, S.; Konya, B.; Mambelli, M.; Schopf, J.M.; Viljoen, M.; Wilson, A.

GFD 147: Glue Schema Specification; Open Grid Forum (OGF): Muncie, IN, USA, 2007.

12. Drozdowicz, M.; Ganzha, M.; Paprzycki, M.; Olejnik, R.; Lirkov, I.; Telegin, P.; Senobari, M. Ontologies, agents

and the grid: An overview. In Parallel, Distributed and Grid Computing for Engineering; Saxe-Coburg Publications:

Stirlingshire, UK, 2009; pp. 117–140.

13. Corcho, O.; Alper, P.; Kotsiopoulos, I.; Missier, P.; Bechhofer, S.; Goble, C. An overview of S-OGSA: A

reference semantic grid architecture. Web Semant. Sci. Serv. Agents World Wide Web 2006, 4, 102–115.

14. Junghans, M.; Agarwal, S.; Studer, R. Towards practical semantic web service discovery. In Proceedings of

the European Semantic Web Conference, Heraklion, Greece, 30 May–3 June 2010; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–29.

15. Stollberg, M.; Keller, U.; Lausen, H.; Heymans, S. In Two-Phase Web Service Discovery Based on Rich Functional

Descriptions, Proceedings of the 4th European Semantic Web Conference, Innsbruck, Austria, 3–7 June 2007; Franconi,

E., Kifer, M., May, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007;

pp. 99–113.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 130 of 166

16. Paolucci, M.; Kawamura, T.; Payne, T.R.; Sycara, K. In Semantic Matching of Web Services Capabilities,

Proceedings of the International Semantic Web Conference, Sardinia, Italy, 9–12 June 2002; Springer:

Berlin/Heidelberg, Germany, 2002; pp. 333–347.

17. Pedrinaci, C.; Cardoso, J.; Leidig, T. Linked USDL: A vocabulary for web-scale service trading. In The Semantic

Web: Trends and Challenges; Springer: Cham, Switzerland, 2014; pp. 68–82.

18. Cardoso, J.; Barros, A.P.; May, N.; Kylau, U. Towards a Unified Service Description Language for the Internet

of Services: Requirements and First Developments. In Proceedings of the 2010 IEEE International

Conference on Services Computing (SCC), Miami, FL, USA, 5–10 July 2010; pp. 602–609.

19. Oberle, D.; Barros, A.P.; Kylau, U.; Heinzl, S. A unified description language for human to automated services.

Inf. Syst. 2013, 38, 155–181.

20. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.;

Parsia, B.; Payne, T.; et al. OWL-S: Semantic Markup for Web Services. Word Wide Web Consortium (W3C).

Available online: https://www.w3.org/Submission/OWL-S/ (accessed on 20 June 2017).

21. Hepp, M. GoodRelations: An ontology for describing products and services offers on the web. In Knowledge

Engineering: Practice and Patterns; Springer: Berlin/Heidelberg, Germany, 2008; pp. 329–346.

22. Youseff, L.; Butrico, M.; Da Silva, D. Toward a unified ontology of cloud computing. In Proceedings of the

IEEE Grid Computing Environments Workshop, Austin, TX, USA, 16 November 2008; pp. 1–10.

23. Han, T.; Sim, K.M. In An ontology-enhanced cloud service discovery system. Proceedings of the International

MultiConference of Engineers and Computer Scientists, Hong Kong, China, 17–19 March 2010; Springer:

Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 17–19.

24. Ma, Y.B.; Jang, S.H.; Lee, J.S. Ontology-Based Resource Management for Cloud Computing. In Intelligent

Information and Database Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 343–352.

25. Haase, P.; Mathäß, T.; Schmidt, M.; Eberhart, A.; Walther, U. Semantic technologies for enterprise cloud

management. In Proceedings of the International Semantic Web Conference, Shanghai, China, 7–11

November 2010; pp. 98–113.

26. Haak, S.; Grimm, S. Towards custom cloud services—Using semantic technology to optimize resource

configuration. In Proceedings of the 8th Extended Semantic Web Conference (ESWC 2011), Paris, France,

20–25 October 2011; pp. 345–359.

27. Grozev, N.; Buyya, R. Inter-Cloud architectures and application brokering: Taxonomy and survey.

Softw. Pract. Exp. 2014, 44, 369–390.

28. Manno, G.; Smari, W.W.; Spalazzi, L. FCFA: A semantic-based federated cloud framework architecture. In

Proceedings of the International Conference on High Performance Computing & Simulation (HPCS), Madrid,

Spain, 02–06 July 2012; pp. 42–52.

29. Bernstein, D.; Deepak, V.; Chang, R. Draft Standard for Intercloud Interoperability and Federation (SIIF); Technical

Report IEEE P2303; IEEE Computer Society: Washington, DC, USA, 2015.

30. Martino, B.D.; Cretella, G.; Esposito, A.; Willner, A.; Alloush, A.; Bernstein, D.; Vij, D.; Weinman, J. Towards

an ontology-based intercloud resource catalogue—The IEEE P2302 intercloud approach for a semantic

resource exchange. In Proceedings of the International Conference on Cloud Engineering, Tempe, AZ, USA,

9–13 March 2015; pp. 458–464.

31. Moscato, F.; Aversa, R.; Di Martino, B.; Fortis, T.; Munteanu, V. An analysis of mOSAIC ontology for cloud

resources annotation. In Proceedings of the Federated Conference on Computer Science and Information

Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 973–980.

32. Santana-Pérez, I.; Perez-Hernández, M.S. A semantic scheduler architecture for federated hybrid clouds. In

Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 2012; pp. 384–391.

33. Dastjerdi, A.V.; Tabatabaei, S.G.H.; Buyya, R. An effective architecture for automated appliance management

system applying ontology-based cloud discovery. In Proceedings of the 10th IEEE/ACM International

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 131 of 166

Conference on Cluster, Cloud and Grid Computing (CCGrid), Washington, DC, USA, 17–20 May 2010; pp.

104–112.

34. Ngan, L.D.; Kanagasabai, R. OWL-S based semantic cloud service broker. In Proceedings of the 2012 IEEE

19th International Conference on Web Services, Honolulu, HI, USA, 24–29 June 2012; pp. 560–567.

35. Aranda, C.B.; Corby, O.; Das, S.; Feigenbaum, L.; Gearon, P.; Glimm, B.; Harris, S.; Hawke, S.; Herman, I.;

Humfrey, N.; et al. SPARQL 1.1 Overview. Word Wide Web Consortium (W3C). Available online:

https://www.w3.org/TR/2012/PR-sparql11-overview-20121108/ (accessed on 20 June 2017).

36. Serrano, M.; Barnaghi, P.; Cousin, P. IoT Semantic Interoperability: Research Challenges, Best Practices, Solutions

and Next Steps; Technical Report for European Research Cluster on the Internet of Things (IERC): Brussels,

Belgium, 2013.

37. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth,

M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group.

Web Semant. Sci. Serv. Agents World Wide Web 2012, 17, 25–32.

38. Wu, G..; Talwar, S.; Johnsson, K.; Himayat, N.; Johnson, K.D. M2M: From mobile to embedded internet.

IEEE Commun. Mag. 2011, 49, 36–43.

39. Cacˇkovic´, V.; Popovic´, Ž. Abstraction and Semantics support in M2M communications. In Proceedingsˇ of

the 36th International Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2013; pp. 404–408.

40. European Telecommunications Standards Institute. Machine-to-Machine Communications (M2M); Functional

Architecture; Technical Report for ETSI: Valbonne, France, 2013.

41. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer

platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26.

42. Raggett, D. Web of Things Framework. Word Wide Web Consortium (W3C). Available online:

https://www.w3.org/2015/05/wot-framework.pdf (accessed on 20 June 2017).

43. Vandenberghe, W.; Vermeulen, B.; Demeester, P.; Willner, A.; Papavassiliou, S.; Gavras, A.; Quereilhac, A.;

Al-Hazmi, Y.; Lobillo, F.; Velayos, C.; et al. Architecture for the heterogeneous federation of future internet

experimentation facilities. In Proceedings of the Future Network and Mobile Summit (FNMS), Lisboa, Portugal,

3–5 July 2013; pp. 1–11.

44. Peterson, L.; Sevinc, S.; Lepreau, J.; Ricci, R. Slice-Based Federation Architecture, version 2; GENI: West

Hollywood, CA, USA, 2010.

45. Van der Ham, J.; Dijkstra, F.; Lapacz, R.; Zurawski, J. GFD 206: Network Markup Language Base Schema;

Technical Report for Open Grid Forum (OGF): Muncie, IN, USA, 2013.

46. Escalona, E.; Peng, S.; Nejabati, R.; Simeonidou, D.; Garcia-Espin, J.A.; Riera, J.F.; Figuerola, S.; de Laat,

C.

GEYSERS: A novel architecture for virtualization and co-provisioning of dynamic optical networks and IT

services. In Proceedings of the Future Network and Mobile Summit, Warsaw, Poland, 15–17 June 2011; pp.

1–8.

47. Garcia-Espin, J.A.; Riera, J.F.; Figuerola, S.; Ghijsen, M.; Demchenko, Y.; Buysse, J.; de Leenheer, M.;

Develder, C.; Anhalt, F.; Soudan, S. Logical infrastructure composition layer, the GEYSERS holistic approach

for infrastructure virtualisation. In Proceedings of the Terena Networking Conference (TNC), Reykjavík,

Iceland, 21–24 May 2012; pp. 1–16.

48. Baldine, I.; Xin, Y.; Mandal, A.; Renci, C.H.; Chase, U.C.J.; Marupadi, V.; Yumerefendi, A.; Irwin, D. Networked

cloud orchestration: A GENI perspective. In Proceedings of the Globecom Workshops, Miami, FL, USA, 6–10

December, 2010; pp. 573–578.

49. Yufeng, X.; Baldine, I.; Chase, J.; Anyanwu, K. TR-13-02: Using Semantic Web Description Techniques for Managing

Resources in a Multi-Domain Infrastructure-as-a-Service Environment; Technical Report for RENCI: Durham, NC,

USA, 2013.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 132 of 166

50. Xin, Y.; Hill, C.; Baldine, I.; Mandal, A.; Heermann, C.; Chase, J. Semantic Plane: Life Cycle of Resource

Representation and Reservations in a Network Operating System; Technical Report for RENCI: Durham, NC, USA,

2013.

51. Xin, Y.; Baldin, I.; Chase, J.; Ogan, K.; Anyanwu, K. Leveraging Semantic Web Technologies for Managing

Resources in a Multi-Domain Infrastructure-as-a-Service Environment; Technical Repor for RENCI: Durham, NC,

USA, 2014.

52. Noy, N.F.; Mcguinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology; Technical Report

for Stanford University: Stanford, CA, USA, 2001.

53. Hobbs, J.R.; Pan, F. Time Ontology in OWL. Word Wide Web Consortium (W3C). Available online:

https://www.w3.org/TR/owl-time/ (accessed on 20 June 2017).

54. Poveda-Villalón, M.; Suárez-Figueroa, M.C.; Gómez-Pérez, A. Validating ontologies with OOPS! In Knowledge

Engineering and Knowledge Management; Springer: Berlin/Heidelberg, Germany, 2012; pp. 267–281.

55. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.;

van Kleef, P.; Auer, S.; et al. DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia.

Semant. Web J. SWJ 2014, 5, 1–29.

56. Cyganiak, R.; Wood, D.; Lanthaler, M. Resource Description Framework (RDF) 1.1 Concepts and Abstract

Syntax. Word Wide Web Consortium (W3C). Available online:

http://travesia.mcu.es/portalnb/jspui/handle/10421/2427 (accessed on 20 June 2017).

57. Beckett, D.; Berners-Lee, T.; Prud’hommeaux., E. Turtle-Terse RDF Triple Language. Word Wide Web

Consortium (W3C). Available online: https://www.w3.org/TeamSubmission/turtle/ (accessed on 20 June 2017).

58. OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA), version 1; OASIS Standard;

Advancing Open Standards for the Information Society (OASIS): Burlington, MA, USA, 2013.

59. Bjorklund, M. RFC 6020: YANG—A Data Modeling Language for the Network Configuration Protocol (NETCONF); RFC

6020 (Proposed Standard); RFC Editor: Los Angeles, CA, USA, 2010.

60. Urbani, J.; van Harmelen, F.; Schlobach, S.; Bal, H. QueryPIE: Backward reasoning for OWL Horst over very

large knowledge bases. In Proceedings of the 10th International Semantic Web Conference (ISWC’11),

Berlin/Heidelberg, Germany, 23–27 October 2011; pp. 730–745.

61. Jeschke, S.; Brecher, C.; Song, H.B.; Rawat, D.B. Industrial Internet of Things; Springer: Cham, Switzerland,

2017.

10.9 DESCRIPTION OF MATCHMAKING CAPABILITIES

For the first prototype, a hybrid version of a Semantic Web search was chosen. This approach
is presented in the paper "A Hybrid Approach for Searching in the Semantic Web".

The idea is that the user starts a search with keywords, whereupon the matchmaking system
searches for these terms in the knowledge graph, first using a traditional search engine, and
then expands the list of results with a technique called "Spread Activation". Figure 64 shows
the architecture of this approach.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 133 of 166

Figure 64: Architecture of the hybrid approach for Searching in the Semantic Web.

The picture starts on the left side of the user. As you can see, the user first enters his keywords
as a query. Using a traditional search engine, all entries related to these terms are listed in the
knowledge graph. Before the results are forwarded to the user, Spread Activation is used to
search the Knowledge again for results that are related to the first results list and exceed a
certain coverage level for the search terms.

Spread activation works by linking individual entries in the descriptions of testbed services and
adding weights to these links. An algorithm for this technology then works through the
knowledge graph with the results already found and selects all that activate the search function.

Finally, the original and newly found hits are delivered to the user. This approach is thus
implemented in the prototypes.

Reference:

1. Ghijsen, M.; van der Ham, J.; Grosso, P.; de Laat, C. Towards an Infrastructure
Description Language for Modeling Computing Infrastructures. 10th International
Symposium on Parallel and Distributed Processing with Applications. IEEE, 2012, pp.
207–214.

2. Ghijsen, M.; van der Ham, J.; Grosso, P.; Dumitru, C.; Zhu, H.; Zhao, Z.; de Laat, C. A
Semantic-Web Approach for Modeling Computing Infrastructures. Computers and
Electrical Engineering 2013, 39, 2553–2565.

3. van der Ham, J.; Stéger, J.; Laki, S.; Kryftis, Y.; Maglaris, V.; de Laat, C. The NOVI
information models. Future Generation Computer Systems 2015, 42, 64–73.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 134 of 166

4. Morsey, M.; Willner, A.; Loughnane, R.; Giatili, M.; Papagianni, C.; Baldin, I.; Grosso,
P.; Al-Hazmi, Y. DBcloud: Semantic Dataset for the cloud. 2016 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS); IEEE: San Francisco,
CA, 2016; pp. 207–212.

5. Cyganiak, R.; Wood, D.; Lanthaler, M. Resource Description Framework (RDF) 1.1
Concepts and Abstract Syntax. Recommendation, World Wide Web Consortium
(W3C), 2014.

6. Beckett, D.; Berners-Lee, T.; Prud’hommeaux., E. Turtle-terse RDF triple language.
Team submission, World Wide Web Consortium (W3C), 2008.

7. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.;
Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; Others. DBpedia-a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web Journal (SWJ)
2014, 5, 1–29.

8. Willner, Alexander, et al. "Using Semantic Web Technologies to Query and Manage
Information within Federated Cyber-Infrastructures." Data 2.3 (2017): 21.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 135 of 166

11 COLLABORATION WITH THE RAWFIE PROJECT ON
ONTOLOGIES FOR UNMANNED VEHICLES AND SENSORS

RAWFIE (Road-, Air-, and Water- based Future Internet Experimentation, http://www.rawfie.eu
) is a project funded by the European Commission (Horizon H2020 programme) under the
Future Internet Research Experimentation (FIRE+) initiative that aims at providing research
facilities for Internet of Things (IoT) devices. The project introduces a unique platform across
the space and technology by integrating numerous test beds of unmanned vehicles for
research experimentation in vehicular, aerial and maritime environments. The platform
supports experimenters with smart tools to conduct and monitor experiments in the domains
of IoT, networking, sensing and satellite navigation.

The SAMANT sub-project, with close collaboration with Fed4FIRE+, provides the appropriate
tools and software enhancements at the RAWFIE testbed or federation level, to support
functionalities related to resource discovery, booking and reservation, provisioning and release
by experimenters, while addressing at the same time the corresponding authentication and
authorization issues at the RAWFIE federation. Within the context of SAMANT, semantic
information models are adopted for the description of UxVs, supporting the abovementioned
functionalities in the federated RAWFIE environment.

11.1 SEMANTIC BASED RESOURCE DESCRIPTION

To our best knowledge, no previous work exists regarding the semantic description of the
features of UxVs and their attached sensors. In a federated environment, such as the RAWFIE
project, an in-depth description of UxVs and their equipped sensors would support user in all
phases of an experiment, like resource discovery, reservation and construction of an execution
scenario. Given the heterogeneity of the various UxVs employed in the case of RAWFIE, one
particular issue that emerges is the description of these offerings. SFA, the de facto standard
API for testbed federation, uses XML-based Resource Specifications (RSpecs) with arbitrary
extensions to describe, discover, provision and release resources. However, such tree-based
data models, lack consistency, standardized vocabularies as well as semantic meanings,
therefore impede interoperability within a federation [WiPa15][MoWi16]. In the context of the
SAMANT project, re-usage and extension of already well-defined standard semantic models
are adopted for representing and linking RAWFIE federated resources. Additionally, the usage
of a semantic registry repository for testbeds and resources will enable experimenters to find
and book resources more easily. For this purpose, the OMN ontology suite [WiPa15], [MoWi16]
is adopted and extended towards the semantic description of RAWFIE federated vehicular,
aerial and maritime environment. The use of OMN leads to:

• Introduction of the necessary extensions and adoption of existing ontologies relative to
the RAWFIE experimentation environment (UxVs, sensors, etc.),

• Maintenance of compatibility and interoperability with existing SFA-enabled
infrastructures by using the information model and the corresponding data models with
Aggregate Manager and MySlice components.

SAMANT ontology follows the common practice, in semantic modeling, of using already well-
defined ontologies. SAMANT ontology is generic and aims to describe any UxV testbed apart

http://www.rawfie.eu/

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 136 of 166

from RAWFIE project requirements. It extends the OMN ontology suite and aims at describing
RAWFIE UxVs resources and their embedded sensors. It adopts many concepts from the
ontologies of OMN suite and adds to this ontology suite two new domain-specific ontology
about unmanned vehicles and sensors, as it is shown in Figure 65. Furthermore, these new
ontologies re-use already defined models from relevant ontologies on sensors and
measurements.

11.1.1 SAMANT UxV Ontology

The extension of OMN ontology suite on the description of unmanned vehicles focuses on the
semantic modeling of the UxVs resources, their reservation lifecycle (discovery, reservation
and release) and the attributes of UxV testbeds and users. It consists of 59 classes, which are
defined in the ontology or imported by others, 41 object properties that represent the
relationships between the classes and 55 data properties that describe the features of the
federated testbeds, the unmanned vehicles and the experimenters. Uxv class represents any
kind of UxV and is descendant of the omn:Resource class of the upper omn-resource ontology.

Figure 65: OMN suite

Data properties as Battery, Max Take off Weight, Speed, and Endurance etc. provide all the
essential characteristic of UxVs. Every Uxv testbeds is defined by Testbed class and is
descendant of Infrastructure class from omn-federation ontology. It connects with UxV and
foaf:Person class with object properties, named :hasResource and :isTestbedOf respectively.
All information about testbeds are represented by data properties such as name, description,
countryCode, geo:alt, geo:long, geo:lat, which specifically provide geographical position of
each testbed’s area using the GeoRSS Feature Model and ontology [Geo07]. foaf:Person
class defines every concept regarding the experimenters and administrator of the testbeds and
is imported by the FoaF ontology.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 137 of 166

Several classes define essential concepts of UxVs attributes. Interface, Network Controller,
Channel classes describe the characteristics of the communication interfaces of UxVs.
HealthStastus class represents the current state of each UxV. ConfiParameters and
ExperimentResourceConfig classes define the concepts of the configuration parameters of the
unmanned vehicles and the experimental scenarios. As it is mentioned earlier, SAMANT
ontology supports the reservation lifecycle of UxVs. For this purpose, many concepts from
omn-lifecycle ontology are imported, which describe the entire lifecycle of resource
management in federated testbeds. The reservation of a UxV is modeled by omn:Reservation
and omn-lifecycle:Lease classes while the state of a reservation is defined by omn-
lifecycle:ReservationState and its subclasses, named Allocated, Cancelled, Pending,
Provisioned, Unallocated. The object properties omn:hasReservation and
omn:isReservationOf expess the relationship between them. Table 11 summarizes all the data
properties of SAMANT UxV ontology. Figure 66 shows the structure of SAMANT UxV ontology.
The ontology - in Turtle format - is available at the following link:

https://github.com/w3c/omn/blob/master/omnlib/ontologies/unchecked/omn-domain-uxv.ttl

Table 11: UxV Attributes

Data Property Name Type

Country Code string

weight double

Take Off Weight double

length double

width double

height double

diameter double

endurance integer

battery integer

Channel Num* integer

Lower Bound Frequency* integer

Upper Bound Frequency* integer

Antenna Count integer

UxV Description string

Testbed Description string

ConfigParameters Description string

Uav Support boolean

Ugv Support Boolean

Usv Support boolean

Interface Vendor
(communication)

string

Interface Nominal Bitrate double

Latitude double

Altitude double

Longitude double

https://github.com/w3c/omn/blob/master/omnlib/ontologies/unchecked/omn-domain-uxv.ttl

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 138 of 166

ConfigParametersMinValue double

ConfigParametersMaxValue Double

11.1.2 SAMANT Sensor Ontology

SAMANT Sensor ontology is an omn-domain specific ontology that models the embedded
sensors on unmanned vehicles and aims at helping candidate users to find the suitable UxV
with the appropriate sensors for his experiment. This ontology imports concepts from already
well-defined ontologies about sensors and measurements, such as the SSN ontology of the
W3C Semantic Sensor Networks Incubator Group (SSN-XG) [CoBa12] and ontology for
quantity kinds and units [Lefo05]. SAMANT Sensor ontology - in Turtle format - is available at
the following link:

https://github.com/w3c/omn/blob/master/omnlib/ontologies/unchecked/omn-domain-sensor.ttl

Figure 66: OMN UxV ontology

Each UxV is equipped with several sensors and some of them are able to measure different
phenomena simultaneously. For this reason, each UxV has a root multi-sensor system that
contains all underlying individual and multiple sensors. The concepts of sensors and multi-
sensor systems are defined by the ssn:SensingDevice and ssn:System classes respectively.
The relation between a UxV and its multi-sensor system is expressed by hasSensorSystem
and isSensorSystemOf object properties. ssn:hasSubSystem object property links every multi-
sensor system with the underlying individual sensors. Additionally, many data properties
provide information about single sensors and multi-sensor systems as it shown in Table 12.
Every sensor is associated with a measuring property and one or more measuring units, e.g.
quantity:tempareture, unit:kelvin and unit:degreeCelcius. These concepts are denoted by

https://github.com/w3c/omn/blob/master/omnlib/ontologies/unchecked/omn-domain-sensor.ttl

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 139 of 166

qu:QuantityKind and qu:Unit classes which model a large number of physical quantity (i.e.
mass, pressure, velocity, electrical current etc) and the corresponding units of measurement
and they are imported by W3C ontology for quantity kinds and units [Lefo05].

Finally the ‘Feature of Interest’ concept is an abstraction of real world phenomena, which
includes air, ground and water concepts and it is defined by ssn:FeatureOfInterest class. Every
physical quantity can be property of one or more of the three ‘Feature of Interest’ concepts.
This relation is expressed by ssn:isPropertyOf and ssn:hasProperty object properties. Figure
67 shows the structure of SAMANT Sensor ontology.

Table 12: Sensor Attributes

Sensor
Attribute

Type

Product
Name

string

Vendor
Name

string

Serial string

Description string

Observing
Property

string

Unit of
Measurement

string

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 140 of 166

Figure 67: OMN Sensor Ontology

11.2 REFERENCES

[Lefo05] Lefort L. Ontology for quantity kinds and units: units and quantities definitions. W3
Semantic Sensor Network Incubator Activity. 2005.

[MoWi16]

M. Morsey, A. Willner, R. Loughnane, M. Giatili, C. Papagianni, I. Baldin, P. Grosso,
Y. Al-Hazmi, “DBcloud: Semantic Dataset for the Cloud”, accepted to appear at
CRNET, Infocom 2016.

[CoBa12] Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S.,...
& Huang, V. (2012). The SSN ontology of the W3C semantic sensor network
incubator group. Web Semantics: Science, Services and Agents on the World Wide
Web, 17, 25-32.

[WiPa15] A. Willner, C. Papagianni, M. Giatili, P. Grosso, M. Morsey, Al-Hazmi Y., I. Baldin,
"The Open-Multinet Upper Ontology - Towards the Semantic-based Management
of Federated Infrastructures", The 10th International Conference on Testbeds and

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 141 of 166

Research Infrastructures for the Development of Networks & Communities
(TRIDENTCOM 2015), Vancouver, Canada, June 2015.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 142 of 166

12 APPENDIX : SLA COMPONENT FIRST CYCLE DOCUMENTATION

12.1 API DOCUMENTATION

12.1.1 API Introduction

The REST interface to the sla-core system has the following conventions:

• Every entity is created with a POST to the collection url. The body request contains the

serialized entity in the format specified in the content-type header. The location header

of the response refers to the url of the new allocated resource. The return code is a 201

on success. Templates and agreements have special considerations (see the

corresponding section).

• A query for an individual item is a GET to the url of the resource (collection url + external

id). The format of the response is specified in the http header with the accept

parameter. The return code is 200. As expected, a not found resource returns a 404.

• Any other query is usually a GET to the collection's url, using the GET parameters as

the query parameters. The result is a list of entities that match the parameters, despite

the actual number of entities. The return code is 200, even if the list is empty.

• Any unexpected error processing the request returns a 5xx.

• An entity (or list) is serialized in the response body by default with the format specified

in the Content-type header (if specified). The request may have an Accept header, that

will be used if the resource allows more than one Content-type.

• Updating an entity involves a PUT request, with the corresponding resource serialized

in the body in the format specified in the content-type header. The return code is 200.

• If a query has begun and/or end parameters, the following search is done: begin <=

entity date < end

12.1.2 Generic operations

The generic operations of resources are shown below. Each particular resource (in following

sections) shows the supported operations and any deviation from the behavior of generic

operations.

The format of a resource can be modified by a project by using serializers.

• GET /{resources}/{uuid} Retrieve an entity by its uuid.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 143 of 166

Request

GET /resources/{uuid} HTTP/1.1

Response in XML

HTTP/1.1 200 OK

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<resource>...</resource>

Response in JSON

HTTP/1.1 200 OK

Content-Type: application/json

{ ... }

Usage (for JSON and XML)

curl -H "Accept: application/xml" http://localhost:8080/sla-service/resources/fc923960-

03fe-41

curl -H "Accept: application/json" http://localhost:8080/sla-service/resources/fc923960-

03fe-41

• GET /resources{?param1=value1¶m2=value2...}

Search the resources that fulfill the params. All resources are returned if there are no
parameters.

Request

GET /resources?param1=value1 HTTP/1.1

Response in XML

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 144 of 166

HTTP/1.1 200 OK

Content-type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<resources>

 <resource>...</resource>

 <resource>...</resource>

 <resource>...</resource>

<resources/>

Response in JSON

HTTP/1.1 200 OK

Content-type: application/json

[{...},{...},{...}]

Usage (for JSON and XML)

curl [-X GET] -H "Accept: application/xml" localhost:8080/sla-service/resources

curl [-X GET] -H "Accept: application/xml" localhost:8080/sla-service/resources?name=res-

name

curl [-X GET] -H "Accept: application/json" localhost:8080/sla-service/resources

curl [-X GET] -H "Accept: application/json" localhost:8080/sla-service/resources?name=res-

name

12.1.2.1 POST /resources

Create a new resource. The created resource will be accessed by its uuid. A message will be
the usual response.

Request in XML

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 145 of 166

POST /resources HTTP/1.1

Content-type: application/xml

<resource>...</resource>

Request in JSON

POST /resources HTTP/1.1

Content-type: application/json

{...}

Usage (for JSON and XML)

curl -H "Accept: application/xml" -H "Content-type: application/xml" -d@<filename> -X POST

localhost:8080/sla-service/resources

curl -H "Accept: application/json" -H "Content-type: application/json" -d@<filename> -X POST

localhost:8080/sla-service/resources

12.1.2.2 UPDATE /resources/{uuid}

Updates an existing resource. The content in the body will overwrite the content of the
resource. The uuid in the body must match the one from the url o not being informed.

Request in XML

PUT /resources/{uuid} HTTP/1.1

Content-type: application/xml

<resource>...</resource>

Request in JSON

PUT /resources/{uuid} HTTP/1.1

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 146 of 166

Content-type: application/xml

{...}

Response in XML

HTTP/1.1 200 Ok

Content-type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<resource>

 ...

</resource>

Response in JSON

HTTP/1.1 200 Ok

Content-type: application/json

{...}

Usage

curl -H "Accept: application/xml" -H "Content-type: application/xml" -d@<filename> -X PUT

localhost:8080/sla-service/resources/{uuid}

curl -H "Accept: application/json" -H "Content-type: application/json" -d@<filename> -X PUT

localhost:8080/sla-service/resources/{uuid}

12.1.2.3 DELETE /resources/{uuid}

Deletes an existing resource.

Request

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 147 of 166

DELETE /providers/{uuid} HTTP/1.1

Response in XML and JSON

HTTP/1.1 200 Ok

Content-type: application/[xml | json]

... (free text indicating that the resource has been removed)

Usage (for JSON and XML)

curl -H "Accept: application/xml" -X DELETE localhost:8080/sla-service/resources/fc923960-

03fe-41

curl -H "Accept: application/json" -X DELETE localhost:8080/sla-service/resources/fc923960-

03fe-41

12.1.2.4 Messages

Some of the above mentioned methods might return a message. Messages can be returned
as XML or JSON.

Message Response in XML

Content-type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<message code="xxx" elemendId="..." message="..."/>

Message Request in JSON

Content-type: application/json

{"code":"xxx", "elemendId":..., "message": ...}

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 148 of 166

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 149 of 166

12.1.3 Providers

• Provider collection URI: /providers

• Provider URI: /providers/{uuid}

A provider is serialized in XML as:

<provider>
 <uuid>fc923960-03fe-41eb-8a21-a56709f9370f</uuid>
 <name>provider-prueba</name>
</provider>

A provider is serialized in JSON as:

{"uuid":"fc923960-03fe-41eb-8a21-a56709f9370f",
 "name":"provider-prueba"}

• GET /providers/{uuid} Retrieves a specific provider identified by uuid

Error message:

• 404 is returned when the uuid doesn't exist in the database.

• GET /providers Retrieves the list of all providers

• POST /providers Creates a provider. The uuid is in the file beeing send

Error message:

• 409 is returned when the uuid or name already exists in the database.

• DELETE /providers/{uuid} Removes the provider identified by uuid.

Error message:

• 404 is returned when the uuid doesn't exist in the database.

• 409 is returned when the provider code is used.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 150 of 166

12.1.4 Templates

• Templates collection URI: /templates

• Template URI: /templates/{TemplateId}

The TemplateId matches the TemplateId attribute of wsag:Template element when the
template is created. A template is serialized in XML as defined by ws-agreement.
An example of template in XML is:

<?xml version="1.0" encoding="UTF-8"?>
 <wsag:Template xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:sla="http://sla.atos.eu"
 wsag:TemplateId="template012">
 <wsag:Name>ExampleTemplate</wsag:Name>
 <wsag:Context>
 <wsag:AgreementInitiator>provider02</wsag:AgreementInitiator>
 <wsag:ServiceProvider>provider01</wsag:ServiceProvider>
 <wsag:ExpirationTime>2014-03-07T12:00:00+0100</wsag:ExpirationTime>
 <wsag:ServiceProvider>AgreementInitiator</wsag:ServiceProvider>
 <wsag:TemplateId>template01</wsag:TemplateId>
 <sla:Service xmlns:sla="http://sla.atos.eu">service3</sla:Service>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <!-- functional description -->
 <wsag:ServiceDescriptionTerm wsag:Name="General"
wsag:ServiceName="Service0001">A GPS service</wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="GetCoordsOperation"
wsag:ServiceName="GPSService0001">operation to call to get the
coords</wsag:ServiceDescriptionTerm>
 <!-- domain specific reference to a service (additional or optional to SDT)
-->
 <wsag:ServiceReference wsag:Name="CoordsRequest"
wsag:ServiceName="GPSService0001">
 <wsag:EndpointReference>

<wsag:Address>http://www.gps.com/coordsservice/getcoords</wsag:Address>
 <wsag:ServiceName>gps:CoordsRequest</wsag:ServiceName>
 </wsag:EndpointReference>
 </wsag:ServiceReference>
 <wsag:ServiceProperties wsag:Name="AvailabilityProperties"
wsag:ServiceName="GPS0001">
 <wsag:Variables>
 <wsag:Variable wsag:Name="ResponseTime"
wsag:Metric="metric:Duration">
 <wsag:Location>qos:ResponseTime</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 </wsag:ServiceProperties>
 <wsag:ServiceProperties wsag:Name="UsabilityProperties"
wsag:ServiceName="GPS0001">
 <wsag:Variables>
 <wsag:Variable wsag:Name="CoordDerivation"
wsag:Metric="metric:CoordDerivationMetric">
 <wsag:Location>qos:CoordDerivation</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 151 of 166

 </wsag:ServiceProperties>
 <!-- statements to offered service level(s) -->
 <wsag:GuaranteeTerm wsag:Name="FastReaction" wsag:Obligated="ServiceProvider">
 <wsag:ServiceScope wsag:ServiceName="GPS0001">
 http://www.gps.com/coordsservice/getcoords
 </wsag:ServiceScope>
 <wsag:QualifyingCondition>
 applied when current time in week working hours
 </wsag:QualifyingCondition>
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>FastResponseTime</wsag:KPIName>
 <wsag:Target>
 //Variable/@Name="ResponseTime" LOWERTHAN 1 second
 </wsag:Target>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsag:Template>

An example of template in JSON is:

{
 "templateId":"template05",
 "context":{
 "agreementInitiator":"provider02",
 "agreementResponder":null,
 "serviceProvider":"AgreementInitiator",
 "templateId":"template01",
 "service":"service3",
 "expirationTime":"2014-03-07T12:00:00CET"
 },
 "name":"ExampleTemplate",
 "terms":{
 "allTerms":{
 "serviceDescriptionTerm":{
 "name":null,
 "serviceName":null
 },
 "serviceProperties":[
 {"name":null, "serviceName":null, "variableSet":null},
 {"name":null, "serviceName":null, "variableSet":null}
],
 "guaranteeTerms":[
 {
 "name":"FastReaction",
 "serviceScope":{
 "serviceName":"GPS0001",
 "value":"http://www.gps.com/coordsservice/getcoords"
 },
 "serviceLevelObjetive":{
 "kpitarget":{
 "kpiName":"FastResponseTime",
 "customServiceLevel":null
 }
 }

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 152 of 166

 }
]
 }
 }
}

• GET /templates/{TemplateId} Retrieves a template identified by TemplateId.

Error message:

• 404 is returned when the uuid doesn't exist in the database.

• GET /templates{?serviceIds,providerId}

The parameters are:

• serviceIds: string with coma separated values (CSV) with the id's of service that is

associated to the template

• providerId: id of the provider that is offering the template

• POST /templates Creates a new template. The file might include a TemplateId or not. In

case of not beeing included, a uuid will be assigned.

Error message:

• 409 is returned when the uuid already exists in the database.

• 409 is returned when the provider uuid specified in the template doesn't exist in the

database.

• 500 when incorrect data has been suplied

• PUT /templates/{TemplateId} Updates the template identified by TemplateId. The body

might include a TemplateId or not. In case of including a TemplateId in the file, it must

match with the one from the url.

Error message:

• 409 when the uuid from the url doesn't match with the one from the file or when the

system has already an agreement associated

• 409 when template has agreements associated.

• 409 provider doesn't exist

• 500 when incorrect data has been suplied

• DELETE /templates/{TemplateId} Removes the template identified by TemplateId.

Error message:

• 409 when agreements are still associated to the template

• 404 is returned when the uuid doesn't exist in the database.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 153 of 166

12.1.5 Agreements

• Agreements collection URI: /agreements

• Agreement URI: /agreement/{AgreementId}

The AgreementId matches the AgreementId attribute of wsag:Agreement element when the
agreement is created. An example of agreement in XML is:

<?xml version="1.0" encoding="UTF-8"?>
<wsag:Agreement xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:sla="http://sla.atos.eu">
 <wsag:Name>ExampleAgreement</wsag:Name>
 <wsag:Context>
 <wsag:ExpirationTime>2014-03-07T12:00:00+0100</wsag:ExpirationTime>
 <wsag:AgreementInitiator>RandomClient</wsag:AgreementInitiator>
 <wsag:AgreementResponder>provider03</wsag:AgreementResponder>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:TemplateId>template04</wsag:TemplateId>
 <sla:Service>service01</sla:Service>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceProperties wsag:Name="NonFunctional"
wsag:ServiceName="ServiceName">
 <wsag:Variables>
 <wsag:Variable wsag:Name="ResponseTime" wsag:Metric="xs:double">
 <wsag:Location>qos:ResponseTime</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 </wsag:ServiceProperties>
 <wsag:GuaranteeTerm wsag:Name="GTResponseTime">
 <wsag:ServiceScope wsag:ServiceName="ServiceName" />
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>ResponseTime</wsag:KPIName>
 <wsag:CustomServiceLevel>{"constraint" : "ResponseTime LT
100"}</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsag:Agreement>

An example of agreement in JSON is:

{
 "agreementId":"agreement07",
 "name":"ExampleAgreement",
 "context":{
 "agreementInitiator":"client-prueba",
 "expirationTime":"2014-03-07T12:00:00+0100",
 "templateId":"template02",
 "service":"service5",
 "serviceProvider":"AgreementResponder",
 "agreementResponder":"provider03"

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 154 of 166

 },
 "terms": {
 "allTerms":{
 "serviceDescriptionTerm":null,
 "serviceProperties":[
 {
 "name":"ServiceProperties",
 "serviceName":"ServiceName",
 "variableSet":{
 "variables":[
 { "name":"metric1","metric":"xs:double","location":"metric1"},
 { "name":"metric2","metric":"xs:double","location":"metric2"},
 { "name":"metric3","metric":"xs:double","location":"metric3"},
 { "name":"metric4","metric":"xs:double","location":"metric4"}
]
 }
 }
],
 "guaranteeTerms":[
 {
 "name":"GTMetric1",
 "serviceScope":{"serviceName":"ServiceName","value":""},
 "serviceLevelObjetive":{
 "kpitarget":{
 "kpiName":"metric1",
 "customServiceLevel":"{\"constraint\" : \"metric1 BETWEEN (0.05,
1)\"}"
 }
 }
 },{
 "name":"GTMetric2",
 "serviceScope":{"serviceName":"ServiceName","value":""},
 "serviceLevelObjetive":{
 "kpitarget":{
 "kpiName":"metric2",
 "customServiceLevel":"{\"constraint\" : \"metric2 BETWEEN (0.1,
1)\"}"
 }
 }
 },{
 "name":"GTMetric3",
 "serviceScope":{"serviceName":"ServiceName","value":""},
 "serviceLevelObjetive":{
 "kpitarget":{
 "kpiName":"metric3",
 "customServiceLevel":"{\"constraint\" : \"metric3 BETWEEN (0.15,
1)\"}"
 }
 }
 },{
 "name":"GTMetric4",
 "serviceScope":{"serviceName":"ServiceName","value":""},
 "serviceLevelObjetive":{
 "kpitarget":{
 "kpiName":"metric4",
 "customServiceLevel":"{\"constraint\" : \"metric4 BETWEEN (0.2,
1)\"}"
 }
 }

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 155 of 166

 }
]
 }
}

• GET /agreements/{AgreementId} Retrieves an agreement identified by AgreementId.

Error message:

• 404 is returned when the uuid doesn't exist in the database.

• GET /agreements/ Retrieves the list of all agreements.

• GET /agreements{?consumerId,providerId,templateId,active}

The parameters are:

• consumerId: uuid of the consumer (value of Context/AgreementInitiator if

Context/ServiceProvider equals "AgreementResponder").

• providerId: uuid of the provider (value of Context/AgreementResponder if

Context/ServiceProvider equals "AgreementResponder")

• templateId: uuid of the template the agreement is based on.

• active: boolean value (value in {1,true,0,false}); if true, agreements currently enforced

are returned.

• GET /agreementsPerTemplateAndConsumer{?consumerId,templateUUID}

The parameters are:

• consumerId: uuid of the consumer (value of Context/AgreementInitiator if

Context/ServiceProvider equals "AgreementResponder").

• templateUUID: uuid of the template in which the agreement is based

• POST /agreements Creates a new agreement. The body might include a AgreementId or

not. In case of not being included, a uuid will be assigned. A disabled enforcement job is

automatically created.

Error message:

• 409 is returned when the uuid already exists in the database

• 409 is returned when the provider uuid specified in the agreement doesn't exist in the

database

• 409 is returned when the template uuid specified in the agreement doesn't exist in the

database

• 500 when incorrect data has been suplied.

• DELETE /agreements/{AgreementId} Removes the agreement identified by

AgreementId.

Error message:

• 404 is returned when the uuid doesn't exist in the database

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 156 of 166

• GET /agreements/active Returns the list of active agreements.

• GET /agreements/{AgreementId}/context Only the context from the agreement identified

by AgreementId is returned.

Error message:

• 404 is returned when the uuid doesn't exist in the database

• 500 when the data agreement was recorded incorrectly and the data cannot be

supplied

Request in XML

GET -H "Accept: application/xml" /agreements/{agreement-id}/context HTTP/1.1

Request in JSON

GET -H "Accept: application/json" /agreements/{agreement-id}/context HTTP/1.1

Response in XML

HTTP/1.1 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<wsag:Context xmlns:sla="http://sla.atos.eu" xmlns:wsag="http://www.ggf.org/namespaces/ws-
agreement">
 <wsag:AgreementInitiator>RandomClient</wsag:AgreementInitiator>
 <wsag:AgreementResponder>provider02</wsag:AgreementResponder>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:ExpirationTime>2014-03-07T12:00:00CET</wsag:ExpirationTime>
 <wsag:TemplateId>template02</wsag:TemplateId>
 <sla:Service>service02</sla:Service>
</wsag:Context>

Response in JSON

HTTP/1.1 200 OK

{"AgreementInitiator":"RandomClient",
 "AgreementResponder":"provider02",
 "ServiceProvider":"AgreementResponder",
 "ExpirationTime":"2014-03-07T12:00:00CET",
 "TemplateId":"template02",
 "Service":"service02"}

Usage (for JSON and XML)

curl -H "Accept: application/xml" http://localhost:8080/sla-
service/agreements/agreement01/context
curl -H "Accept: application/json" http://localhost:8080/sla-
service/agreements/agreement01/context

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 157 of 166

• GET /agreements/{AgreementId}/guaranteestatus Gets the information of the status of

the different Guarantee Terms of an agreement.

There are three available states: NON_DETERMINED, FULFILLED, VIOLATED.
Error message:

• 404 is returned when the uuid doesn't exist in the database

Request in XML

GET -H "Accept: application/xml" /agreements/{agreement-id}/guaranteestatus
HTTP/1.1

Request in JSON

GET -H "Accept: application/json" /agreements/{agreement-id}/guaranteestatus
HTTP/1.1

Response in XML

HTTP/1.1 200 OK
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<guaranteestatus AgreementId="agreement02" value="FULFILLED">
 <guaranteetermstatus name="GTResponseTime" value="FULFILLED"/>
 <guaranteetermstatus name="GTPerformance" value="FULFILLED"/>
</guaranteestatus>

Response in JSON

HTTP/1.1 200 OK
{"AgreementId":"agreement02",
 "guaranteestatus":"FULFILLED",
 "guaranteeterms":
 [{"name":"GTResponseTime", "status":"FULFILLED"},
 {"name":"GTPerformance", "status":"FULFILLED"}]
 }

Usage (for JSON and XML)

curl -H "Accept: application/xml" http://localhost:8080/sla-
service/agreements/agreement01/guaranteestatus
curl -H "Accept: application/json" http://localhost:8080/sla-
service/agreements/agreement01/guaranteestatus

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 158 of 166

12.1.6 Enforcement Jobs

An enforcement job is the entity which starts the enforcement of the agreement guarantee
terms. An agreement can be enforced only if an enforcement job, linked with it, has been
previously created and started. An enforcement job is automatically created when an
agreement is created, so there is no need to create one to start an enforcement.

• Enforcement jobs collection URI: /enforcements

• Enforcement job URI: /enforcements/{AgreementId}

An enforcement job is serialized in XML as:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<enforcement_job>
 <agreement_id>agreement02</agreement_id>
 <enabled>true</enabled>
 <last_executed>2014-08-13T10:01:01CEST</last_executed>
</enforcement_job>

An enforcement job is serialized in JSON as:

{"enabled":true,
 "agreement_id":"agreement02",
 "last_executed":"2014-08-13T10:01:01CEST"}

• GET /enforcements/{AgreementId} Retrieves an enforcement job identified by

AgreementId.

Error message:

• 404 is returned when the uuid doesn't exist in the database

• GET /enforcements Retrieves the list of all enforcement job.

• POST /enforcements Creates and enforcement job. Not required anymore. The

enforcement job is automatically generated when an agreement is created.

Error message:

• 409 is returned when an enforcement with that uuid already exists in the database

• 404 is returnes when no agreement with uuid exists in the database

PUT /enforcements/{AgreementId}/start Starts an enforcement job.
Error message:

• 403 is returned when it was not possible to start the job

Request

PUT /enforcements/{agreement-id}/start HTTP/1.1

Response in XML and JSON

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 159 of 166

HTTP/1.1 200 Ok
Content-type: application/[xml | json]

The enforcement job with agreement-uuid {agreement-id} has started

Usage (for JSON and XML)

curl -H "Accept: application/xml" -X PUT localhost:8080/sla-service/enforcements/fc923960-
03fe-41/start
curl -H "Accept: application/json" -X PUT localhost:8080/sla-service/enforcements/fc923960-
03fe-41/start

• PUT /enforcements/{AgreementId}/stop Stops an enforcement job

Error message:

• 403 is returned when it was not possible to start the job

Request

PUT /enforcements/{agreement-id}/stop HTTP/1.1

Response in XML and JSON

HTTP/1.1 200 OK
Content-type: application/[xml | json]

The enforcement job with agreement-uuid {agreement-id} has stoppped

Usage (for JSON and XML)

curl -H "Accept: application/xml" -X PUT localhost:8080/sla-service/enforcements/fc923960-
03fe-41/stop
curl -H "Accept: application/json" -X PUT localhost:8080/sla-service/enforcements/fc923960-
03fe-41/stop

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 160 of 166

12.1.7 Violations

• Violations collection URI: /violations

• Violation URI: /violations/{uuid}

A violation is serialized in XML as:

<violation>
 <uuid>ce0e148f-dfac-4492-bb26-ad2e9a6965ec</uuid>
 <contract_uuid>agreement04</contract_uuid>
 <service_scope></service_scope>
 <metric_name>Performance</metric_name>
 <datetime>2014-08-13T10:01:01CEST</datetime>
 <actual_value>0.09555700123360344</actual_value>
</violation>

A violation is serialized in JSON as:

{"uuid":"e431d68b-86ac-4c72-a6db-939e949b6c1",
 "datetime":"2014-08-13T10:01:01CEST",
 "contract_uuid":"agreement07",
 "service_name":"ServiceName",
 "service_scope":"",
 "metric_name":"time",
 "actual_value":"0.021749629938806803"}

• GET /violations/{uuid} Retrieves information from a violation identified by the uuid.

• GET /violations{?agreementId,guaranteeTerm,providerId,begin,end}

Parameters:

• agreementId: if specified, search the violations of the agreement with this agreementId,

• guaranteeTerm: if specified, search the violations of the guarantee term with this name

(GuaranteeTerm[@name]),

• providerId: if specified, search the violations raised by this provider.

• begin: if specified, set a lower limit of date of violations to search. Date format: yyyy-

MM-dd'T'HHss

• end: if specified, set an upper limit of date of violations to search. Date format: yyyy-

MM-dd'T'HHss

Error message:

• 404 when erroneous data is provided in the call

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 161 of 166

12.1.8 Penalties

• Penalties collection URI: /penalties

• Penalty URI: /penalties/{uuid}

A penalty is serialized in XML as:

<penalty xmlns:sla="http://sla.atos.eu" xmlns:wsag="http://www.ggf.org/namespaces/ws-
agreement">
 <uuid>ec7fd8ec-d917-49a2-ad80-80ff9aa8269c</uuid>
 <agreement>agreement-a</agreement>
 <datetime>2015-01-21T18:42:00CET</datetime>
 <definition type="discount" expression="35" unit="%" validity="P1D"/>
</penalty>

A penalty is serialized in JSON as:

{
 "uuid":"bfc4bc66-d647-453a-b813-d130f6116daf",
 "datetime":"2015-01-21T18:49:00CET",
 "definition":{
 "type":"discount",
 "expression":"35",
 "unit":"%",
 "validity":"P1D"
 },
 "agreement":"agreement-a"
}

• GET /penalties/{uuid} Retrieves information from a penalty identified by the uuid.

• GET /penalties{?agreementId,guaranteeTerm,begin,end}

Parameters:

• agreementId: if specified, search the penalties of the agreement with this agreementId,

• guaranteeTerm: if specified, search the penalties of the guarantee term with this name

(GuaranteeTerm[@name]),

• begin: if specified, set a lower limit of date of penalties to search,

• end: if specified, set an upper limit of date of penalties to search.

Error message:

• 404 when erroneous data is provided in the call

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 162 of 166

12.2 INSTALLATION GUIDE

12.2.1 Requirements

The requirements to install a working copy of the sla core are:

• Oracle JDK >=1.6

• Database to install the database schema for the service: Mysql>=5.0

• Maven >= 3.0

12.2.2 Installation

Source of the Project

Download the project, for the moment the code is into the zip file, until we identify the source
repository in the project.

• Unzip newVersionCoreSLA.zip

Delivered versions

• V0.1 installationGuide_SLA_v0.1.zip Basic version, without configuration

parameters and basic API monitoring (without aggregated data)

• V0.2 installationGuide_SLA_v0.2.zip this version is integrated with the last

monitoring data, which includes the aggregated data, moreover it include the

configuration properties to be deployed in different nodes.

• V0.3 installationGuide_SLA_v0.2.zip, this version includes the common structure of

the monitoring engine for NTUA and NITOS testbeds. It is included the raw data and

the aggregated data (for multiple nodes).

Creating the mysql database

From mysql command tool, create a database (with a user with sufficient privileges, as root):

$ mysql -p -u root

mysql> CREATE DATABASE atossla;

Create a user:

mysql> CREATE USER atossla@localhost IDENTIFIED BY '_atossla_';

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 163 of 166

mysql> GRANT ALL PRIVILEGES ON atossla.* TO atossla@localhost; -- * optional WITH

GRANT OPTION;

From command prompt, create needed tables:

$ mvn test exec:java -f sla-repository/pom.xml

Another option to create the database is execute a sql file from the project root directory:

$ bin/restoreDatabase.sh

The names used here are the default values of the sla core. See section configuration to know
how to change the values.

12.2.3 Configuration

The project is made up of five main modules:

• SLA Repository

• SLA Enforcement

• SLA Service

• SLA Tools

• SLA Personalization

Several parameters can be configured through this configuration.properties file (which is
placed in the parent directory).

1. db.* allows to configure the database username, password and name in case it has

been changed from the proposed one in the section Creating the mysql database. It

can be selected if queries from hibernate must be shown or not. These parameters can

be overriden at deployment time through the use of environment variables (see section

Running),

2. enforcement.* several parameters from the enforcement can be customized,

3. service.basicsecurity.* basic security is enabled. These parameters can be used to set

the user name and password to access to the rest services.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 164 of 166

4. ''parser.*'' different parsers can be implemented for the agreement and template. By

default, wsag standard parsers have been implemented and configured in the file. Also

dateformat can be configured.

5. “monitoring.*” indicates the different parameters that should be configure in order to

obtain the data from the monitoring system.

1. url indicates the host name of the monitoring system

2. token indicates the authentication token to connect with the monitoring system.

If you're creating the database using the command “mvn test exec:java -f sla-
repository/pom.xml” please make sure that you configure properly sla-
repository\src\main\resources\META-INF\persistence.xml. Make sure you're setting the
username, password and connection url with the proper parameters.

<property name="hibernate.connection.username" value="atossla" />

<property name="hibernate.connection.password" value="_atossla_" />

<property name="hibernate.connection.url"

value="jdbc:mysql://localhost:3306/atossla" />

12.2.4 Compiling

$ mvn install

If you want to skip tests:

$ mvn install -Dmaven.test.skip=true

The result of the command is a war in sla-service/target.

12.2.5 Running

runserver.sh script runs the sla-core server using jetty runner on port 8080 and / as context
path.

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 165 of 166

$ bin/runserver.sh

Some configuration parameters can be overridden using environment variables or jdk
variables. The list of parameters overridable is:

• DB_DRIVER; default value is com.mysql.jdbc.Driver

• DB_URL; default value is jdbc:mysql://${db.host}:${db.port}/${db.name}

• DB_USERNAME; default value is ${db.username}

• DB_PASSWORD; default value is ${db.password}

• DB_SHOWSQL; default value is ${db.showSQL}

• MONITORING_URL; default value is ${monitoring.url}

• MONITORING_TOKEN; default value is ${monitoring.token}

For example, to use a different database configuration:

$ export DB_URL=jdbc:mysql://localhost:3306/sla

$ export DB_USERNAME=sla

$ export DB_PASSWORD=<secret>

$ export MONITORING_URL=http://vnews-2.netmode.ece.ntua.gr:3000

$ export MONITORING_TOKEN=Bearer <token>

$ bin/runserver.sh

12.2.6 Logging

By default, sla-core logs to stdout using log4j. The log4.properties file is stored in sla-service
in sla-service/src/main/resources.

If you want to use another log4j configuration, you can pass a different properties file to the
JRE using -Dlog4j.configuration=file:{file path}.

12.2.7 Testing

Check that everything is working:

D3.2: Developments for the first cycle

© 2017-2021 FED4FIRE+ Consortium Page 166 of 166

$ curl http://localhost:8080/api/providers

12.2.8 Adapters

We have created the adapters to get the data from the tested monitoring engine. For the
moment, we have integrated Nitos and Ntua testbeds, which have the same structure
messages. If other testbeds want to be integrated using the defined structure, it will not
necessary to adapt anything. Nevertheless, if the new monitoring systems have another
message definition, it will be necessary to create new adapters to integrate these new testbeds.

12.2.9 Security access

For the moment, we have activated two context to do the same.

• Without authentication

$ curl http://localhost:8080/api/providers

• With authentication

$ curl http://localhost:8080/api/secure/providers --user name:password

We can use for the moment without authentication since we need to change it for the
authentication decided in the project. We can postpone this adaptation.

12.2.10 Running with other applications

If we want to deploy the component in other web application, it is only necessary to copy the
generated war file to the folder of the Web Application. For example for the Tomcat tool:

cp <sla_core>/sla-service/target/sla-service.war <tomcat>/webapps

If we decide to maintain jetty, we will need to modify the bin/runserver.sh file to be executed in
background and start/stop jetty tool as a service (to be decided).

http://localhost:8080/api/secure/providers

