
© 2017-2021 FED4FIRE+ Consortium Page 1 of 44

Grant Agreement No.: 732638
Call: H2020-ICT-2016-2017
Topic: ICT-13-2016
Type of action: RIA

D4.02: First TaaS Prototype

Abstract This deliverable describes the first prototype with the one-stop-shop
with matchmaking capabilities, including the interactions between

several components. A manual describes how customers and testbed

providers can interact with the prototype.

Keywords One-Stop-Shop, matchmaking, integration, testbed provider, spread-

activation.

Work package WP 4

Task Task 4.2

Due date 30/06/2018

Submission date 10/11/2018

Deliverable lead Fraunhofer

Version 2.3

Authors
Jonas Rook (TUB), Alexander Willner (Fraunhofer), Francesco Verde

(Martel), Loic Baron (UPMC), Radomir Klacza (UPMC)

Reviewers Francesco Verde (Martel)

Ref. Ares(2018)6386668 - 12/12/2018

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 2 of 44

Document Revision History

Version Date Description of change List of contributors
V0.1 01/04/2018 TOC Jonas Rook (TUB)
V0.2 14/04/2018 Clean-up Jonas Rook (TUB)
V0.3 06/06/2018 Added more content and

responsibilities.
Jonas Rook (TUB)

V0.4 26/06/2018 Added content for the sections Design
and Manual.
Added abstract and keywords.

Jonas Rook (TUB)

V0.5 27/06/2018 Added text for Odoo.
Added introduction.

Francesco Verde (Martel)
Alexander Willner (Fraunhofer)

V0.6 29/06/2018 Added content for the matchmaking
capabilities.
Added content for the conclusion.

Jonas Rook (TUB)

V0.7 02/07/2018 Added executive summary.
Added D4.1 summary.
Added Architecture description.
Added citations.

Jonas Rook (TUB)

V0.8 23/09/2018 Added content for the section Design
for MySlice.

Loic Baron (UPMC)

V0.9 27/09/2018 Added content for the manual.
Added content for the section Future
Work

Alexander Willner (Fraunhofer)
Radomir Klacza (UPMC)

V1.0 10/10/2018 Changed the lead creation section Francesco Verde (Martel)
V2.0 25/10/2018 Odoo: added more details Francesco Verde (Martel)
V2.1 01/11/2018 Updated Executive Summary,

Introduction, Design and Manual
sections.

Alexander Willner (Fraunhofer)

V2.2 07/11/2018 Fixed: colours/fonts, styles, match
figure-number page. Comments.

Francesco Verde (Martel)

V2.3 10/11/2018 Final review, rephrasing, clean-up,
fixed formatting & styles, fixed
references, fixed spelling, fixed tables,
fixed aspect ratio of figures, fixed
references, fixed abbreviations, fixed
capitalization, fixed fonts, …

Alexander Willner (Fraunhofer)

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 3 of 44

DISCLAMER

The information, documentation and figures available in this deliverable are written by the
Federation for FIRE Plus (Fed4FIRE+); project’s consortium under EC grant agreement
732638 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2017-2021 Fed4FIRE+ Consortium

ACKNOWLEDGEMENT

This deliverable has been written in the context of a Horizon 2020 European research project,
which is co-funded by the European Commission and the Swiss State Secretariat for
Education, Research and Innovation. The opinions expressed, and arguments employed do
not engage the supporting parties.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 4 of 44

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FED4FIRE+ project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 5 of 44

EXECUTIVE SUMMARY

The most valuable assets testbeds have are actual knowledge and equipment. Therefore, the
main objective of this deliverable is to describe a “Testbed as a Service (TaaS)” broker that
allows potential customers to book added-value services that might be offered in a testbed in
a federation. Such a one-stop-shop can be used to search, find and book a best-matched
testbed according to the customer requirements. This might allow new revenue streams to be
created.

This deliverable analyzes and describes the needed capabilities that such a system should
have in this project. This analysis includes the tools and technologies used to implement the
system and provides an overview of a proposed matchmaking algorithm. The implementation
is based on the gap analysis conducted in deliverable D4.01 [1]. Therefore, an overview of the
deliverable D4.01 will be discussed in brief in the next section of this deliverable.

To sum up, an introduction to the individual components used for the building a TaaS broker is
given, followed by a description of their interactions and a manual on how to use the TaaS
broker is given. We conclude with an outlook.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 6 of 44

TABLE OF CONTENTS

DISCLAMER ... 3

COPYRIGHT NOTICE ... 3

ACKNOWLEDGEMENT .. 3

1 INTRODUCTION .. 10

1.1 OBJECTIVES ... 10

1.2 SUMMARY OF THE FIRST DELIVERABLE D4.01 ... 10

1.3 CONCLUSION ... 11

2 DESIGN .. 12

2.1 SELECTION OF TOOLS .. 12

2.1.1 MySlice .. 12

2.1.2 Odoo .. 13

2.1.3 Odoo Implementation Details ... 15

2.2 MARKETPLACE ... 17

2.3 ARCHITECTURE DESCRIPTION .. 20

2.4 DESCRIPTION OF MATCHMAKING CAPABILITIES ... 20

3 MANUAL .. 22

3.1 SERVICE PUBLICATION ... 22

3.1.1 Register the Testbed Provider .. 23

3.1.2 Register the Services ... 24

3.2 SERVICE SELECTION ... 26

3.2.1 Query Demand ... 27

3.2.2 Selection Summary .. 29

3.3 LEAD CREATION ... 30

3.4 EXECUTION .. 36

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 7 of 44

3.4.1 Feedback between Customer and Vendor ... 36

3.4.2 Customer Accepts the Quotation .. 37

3.5 CONCLUSION ... 39

3.5.1 The Sales Order Becomes an Invoice .. 39

3.5.2 Invoice and a Confirmation of Customer’s Payment ... 39

3.5.3 Evaluation .. 41

4 CONCLUSION/FUTURE WORK .. 42

4.1 MARKETPLACE ... 42

4.2 MATCHMAKING ... 42

4.3 MYSLICE ... 42

4.4 ODOO .. 42

5 WORKS CITED .. 44

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 8 of 44

LIST OF FIGURES

FIGURE 1: THE INITIAL INTEGRATION PLAN FOR THE PROTOTYPE. 11
FIGURE 2: MYSLICE-ARCHITECTURE. .. 12
FIGURE 3: CONFIGURATION OF AN INCOMING MAIL SERVER ON ODOO. 16
FIGURE 4: CONFIGURATION OF SALES CHANNEL. .. 17
FIGURE 5: MYSLICE INTEGRATION WITH THE MARKETPLACE AS A PLUG-IN. 17
FIGURE 6: CURRENT START PAGE OF THE MARKETPLACE COMPONENT. 18
FIGURE 7: STRUCTURE AND DATA FLOW IN FLUX [5].. 19
FIGURE 8: STRUCTURE AND DATA FLOW OF THE MARKETPLACE PLUG-IN. 19
FIGURE 9: ARCHITECTURE WITH ALL COMPONENTS. ... 20
FIGURE 10: HYBRID APPROACH FOR SEARCHING IN THE SEMANTIC WEB [4] 21
FIGURE 11: OVERVIEW OF ACTIVITIES FOR SERVICE PUBLICATION. 23
FIGURE 12: REGISTRATION OF THE FUSECO PLAYGROUND TESTBEDS 24
FIGURE 13: REGISTERING THE SERVICES OF FUSECO PLAYGROUND 25
FIGURE 14: CREATING/ADDING A NEW SERVICE. ... 26
FIGURE 15: OVERVIEW OF ACTIVITIES FOR SERVICE PUBLICATION. 27
FIGURE 16: EXAMPLE OF THE SERVICE SELECTION.. 28
FIGURE 17: SEARCHING SERVICES FOR TESTING BY USING MATCHMAKING. 29
FIGURE 18: REQUEST FURTHER INFORMATION AFTER THE SELECTION PHASE. ... 30
FIGURE 19: OVERVIEW OF ACTIVITIES FOR LEAD CREATION. 31
FIGURE 20: VENDOR’S ODOO NOTIFICATION EMAIL. ... 31
FIGURE 21: ODOO LOG-IN PAGE. .. 32
FIGURE 22: ODOO BACKEND – VENDOR’S RFQ VIEW. ... 32
FIGURE 23: ODOO BACKEND – VENDOR’S NEW QUOTATION VIEW. 33
FIGURE 24: ODOO BACKEND – VENDOR’S NEW CUSTOMER CONTACT FORM. 34
FIGURE 25: ODOO BACKEND – VENDOR’S NEW QUOTATION VIEW. 34
FIGURE 26: ODOO BACKEND – VENDOR’S EMAIL VIEW. ... 35
FIGURE 27: ODOO FRONTEND – CUSTOMER’S WELCOME PAGE. 35
FIGURE 28: OVERVIEW OF ACTIVITIES FOR EXECUTION. .. 36
FIGURE 29: ODOO FRONTEND – EMAIL & MESSAGE SECTION. 37
FIGURE 30: ODOO FRONTEND - PAYMENT CONFIRMATION VIEW. 38
FIGURE 31: OVERVIEW OF ACTIVITIES FOR CONCLUSION. ... 39
FIGURE 32: ODOO BACKEND – VENDOR’S SALES ORDER VIEW. 39
FIGURE 33: ODOO BACKEND – VENDOR’S INVOICE VIEW. .. 40
FIGURE 34: ODOO FRONTEND – CUSTOMER’S PAYMENT LIST PAGE. 41

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 9 of 44

ABBREVIATIONS

BSS Business Support System

CRM Customer Relationship Management

eTOM Enhanced Telecom Operations Map

FanTaaStic Testbeds-as-a-Service for the EIT ICT Labs

FedSM Federated IT Service Management

FIRE Future Internet Research and Experimentation

IIoT Industrial Internet of Things

KPI Key Performance Indicator

MVC Model View Controller

NLP Natural Language Processing

OSS Operations Support System

QoS Quality of Service

RFQ Request For Quote

SFA Slice Federation Architecture

SLA Service Level Agreements

OPC UA Open Platform Communication Unified Architecture

TaaS Testbed as a Service

TSN Time Sensitive Networking

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 10 of 44

 1 INTRODUCTION

 1.1 OBJECTIVES

In a number of conducted studies, the concept “Testbed as a Service” has been covered
before. Some work suggests to provide brokering capabilities, in order to allow resource
providers to offer different kinds of services in federated infrastructures. For instance,
FanTaaStic was a project with the EIT ICT Labs initiative, that aimed at brokering services
towards large-scale European experimental facilities. Based on similar concepts, within WP4
aims at building a sustainable marketplace, that is, both allowing testbed providers to offer their
own services, and allowing the customers to find and book them easily. As a result, testbed
providers might be able to create an additional source of revenue. The objectives can be
summarised as follows: allowing new revenue streams, creating an open, self-sustainable
marketplace for services, and focus on intelligent matchmaking and allow on-demand booking.

This deliverable introduces a prototype that implements these points and thus makes it
possible to offer the testbeds as a service. The starting point of this report is the gap analysis
that emerged from deliverable D4.1 [1]. The gap analysis showed the lessons learned from
similar projects and it’s also presented various tools with which the implementation can be
done.

The remainder of this document is structured as follows. Since the results of the analysis have
a great impact on this report and on TaaS, it will be listed here again. The design section
describes the tools that make up the prototype and how they interact with one other. The
manual section describes how the customer, the vendor and the federation can use the TaaS
broker. Finally, there is a brief summary and outlook for each individual component and for the
TaaS Prototype.

 1.2 SUMMARY OF THE FIRST DELIVERABLE D4.01

The gap analysis from deliverable D4.1 showed, on the basis of previous or similar projects,
what needs to be considered and what experiences can be taken from them. This included
identifying some user groups, functions that must be made available by the system, and what
the initial plan for implementation might look like. Figure 1 shows this initial plan.

As can be seen in the figure, the idea was to extend the existing systems with new components
so that they meet the new requirements. The Figure 1 also shows the connection to the tasks
in Work Package 3, where each testbed has an application with which it can load its services
into the Semantic Directory. This in turn enables users to search for them via the TaaS portal.
In addition, it should be possible to import data from the existing databases of the testbeds.
The Semantic Directory is responsible for processing the uploaded data. It provides the
appropriate results on the user requests and should be able to integrate all existing data, such
as registered users or testbeds, like the applications for the testbeds.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 11 of 44

Figure 1: The initial Integration Plan for the Prototype.

 1.3 CONCLUSION

Hence, this deliverable presents a prototype and implementation of the Task T4.2. Using D4.01
as starting point, the first prototype has been developed. The extent to which the initial plan
was implemented is examined and explained in more detail in the Design section. In the
following sections we are going to present the Design concept in detail, the Manual with a
detail description on the usage of the One-Stop-Shop system, the Conclusion with the entire
deliverable in the nutshell and the Future Works with some possible developments and
chances in order to make the TaaS broker more efficient.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 12 of 44

 2 DESIGN

This chapter deals in detail with the selected tools which will discussed in the next sections. It
includes a detailed description and its purpose. It also describes how the tools are connected
in order to build the architecture of the first prototype. At the end, the matchmaking system will
be presented.

 2.1 SELECTION OF TOOLS

Before considering the prototype, all components are introduced. Each of them has its own
task, which takes care of the relationship between customers and testbed providers (vendors).
In addition, the architectures of the components are examined in more detail and certain design
decisions are explained clearly.

 2.1.1 MySlice

The goal of the GUI component is to provide a simple tool to use, low barrier entry point to
allow customers to discover available offerings (technical and non-technical). While the initial
discovery phase should not require any prerequisite from the user (e.g., only a modern web
browser or client for RESTful services), a handover to an authenticated service request is
envisioned. One existing tool that can be reused and extended is MySlice, which has already
been developed and used within a number of FIRE projects. It is envisioned to extend it
towards the specific requirements for WP4. Its architecture is depicted in Figure 2 and services
are responsible for gathering data from the distributed sources of the architecture. The Web

frontend interacts with a document database (RethinkDB), which is used as a caching system.
It is also used to store data specific to the frontend. This real-time database offers the possibility

Figure 2: MySlice-Architecture.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 13 of 44

to the services of the MySlice API to subscribe to events. As soon as the web frontend updates
a record, the services are notified and can trigger events. This architecture allows decoupling
the frontend from the complexity of processing results from distributed data sources (AMs,
Registry).

This modular architecture allows to be extended on both sides either to support new services
or to enhance the web frontend. In the Fed4FIRE+ context it will be extended with
matchmaking functionality and allow users to reserve not only Fed4FIRE+ specific
physical/virtual resources but also to match specific user requests related to non-technical
resources.

MySlice also provides the functionality to register and manage users. The communication with
the testbeds is ensured using the SFA AM API. The communication with the Registry relies on
the SFA Registry API. This will be extended to support Odoo AuthN module.

In the following subsections we are providing information about the most important MySlice
components.

 2.1.3.1 SFA Registry

This module provides a registry service as specified by the SFA. It can be queried by the
MySlice core as well as by some remote registries and provides information about the SFA
objects which this domain is responsible for.

 2.1.3.2 MySliceLib

This module supports the interaction of MySlice with multiple Aggregate Managers that are
part of a federation of testbeds.

 2.1.3.3 MySlice Backend

This module supports all the advanced functionality provided by MySlice, such as, the distributed
management of queries, asynchronous handling of the queries, caching of the results.

 2.1.3.4 MySlice Frontend

This module is in charge of the frontend that exposes the underlying MySlice functionality to
various users/experimenters.

 2.1.2 Odoo

The Fed4Fire+ Federation (called “Federation”) requests are:

• Customer Quotation Management.
• Customer Billing Management.
• Customer Helpdesk Management.

A common method to manage a company's interaction with current and potential customers is
to use a Customer Relationship Management (CRM) system. According to the Wikipedia: “One

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 14 of 44

important aspect of the CRM approach is the system of CRM that compile data from a range
of different communication channels, including a company's website, telephone, email, live
chat, marketing materials, and more recently, social media. Through the CRM approach and
the system used to facilitate it, businesses learn more about their target audiences and how to
best cater to their needs.”

There are several Opensource CRMs such as

• vTiger (https://www.vtiger.com)
• SugarCRM (https://www.sugarcrm.com)
• Odoo (https://www.odoo.com)

Odoo was the choice within WP4 for three interesting features:

1. Customer Billing Management and Customer Helpdesk Management APIs.
These APIs make faster and simpler the integration among Odoo, MySlice and
Marketplace. For example, a customer (user) can create a request for a quotation
from the Fed4FIRE catalogue quickly and easily as an online purchase. Under the
hoods, Odoo creates a lead, sends the request to a vendor/Federation (testbed
provider) and comes back to the customer with a vendor’s message or email.
Customers and vendors do not need to install any software or app on their
computers.

2. Multi-company functionality. Both Federation and vendors can manage billing,
accounting and so forth directly. They only need an Odoo account; the software will
be the same for all of them.

3. Online payment services. PayPal, Stripes and other electronic payment methods
are available in order to simplify and speed up the business between the customers
and the vendors

Furthermore, Odoo is an all-in-one management software that offers a range of business
applications that form a complete suite of enterprise management applications targeting
companies of all sizes. Odoo is an all-in-one business software which includes accounting,
billing, CRM, website/e-commerce, manufacturing, warehouse and inventory.

 2.1.3.1 System Description

Odoo runs on a server hosted by UPMC. The server uses a GNU/Linux Ubuntu distribution as
an operating system.

There are two different editions of Odoo: Community and Enterprise versions. The Community
is a free and open source version, the Enterprise extends the Community version with
commercial features and services. Currently, we use the Community version.

Odoo is a combination of two parts: a frontend and a backend part.

The frontend part is the public one that is, what the other people can see or manage. For
example, the homepage, the log-on or the sign-up pages belong to the frontend part. The
customers use this part to communicate with the vendors (e.g. testbed providers/Federation)
or check their bookings, their bills, their payments etc.

The backend part is reserved only for the vendors and Federation. The backend is a dashboard

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 15 of 44

where they can manage their own business such as customer messages, requests for
quotation (RFQ), invoices etc.

Odoo is basically built and developed in Python language, but it also uses CSS and jQuery
languages for a better user interface (UI) and user experience (UX).

The advantage of this software is the module, formerly “add-on”. In this way, it is possible to
add and remove features without editing the core of Odoo. Everyone can develop some add-
ons or get them from a dedicated place where all add-ons are collected [7]. The add-ons are
free or paid.

 2.1.3.2 Dataset Description

For our simulation we need three things:

• A customer email address is required for three reasons:
o for the customer’s Odoo account (frontend).
o for receiving all Odoo notifications.
o for a direct communication between the customer and the vendor

• A vendor email address is required for three reasons:
o for the vendor’s Odoo account (backend).
o for receiving all Odoo notifications.
o for a direct communication between the customer and the vendor.

• A list of vendors’ services and products:
o Marketplace/MySlice (market.fed4fire.eu) and Odoo (crm.fed4fire.eu) are

synchronized through Odoo’s native API (see External API section for further
details). So, when a service or a product is created, updated or deleted on
Odoo, it will be created, updated or deleted on Marketplace/MySlice
automatically.

 2.1.3 Odoo Implementation Details

 2.1.3.1 Details of the Simulation Environment

Odoo is not a standalone software like Office suite, but it needs to be used as a website.
Indeed, there is a log-on page at the URL: crm.fed4fire.eu. After logging in, both the customers
and the vendors can access their own accounts and start their own business. Therefore, no
specific software, tools or devices are not required, just a computer with an OS (Windows,
GNU/Linux, Apple etc.), a browser (Firefox, Chrome, Internet Explorer etc.) and a network
connection

 2.1.3.2 Integration

The integration among Odoo, Marketplace and MySlice is provided by:

External API
Odoo provides its native Application Programming Interface (API). Odoo documentation gives
a good definition of that:

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 16 of 44

“Odoo is usually extended internally via modules, but many of its features and all of its data
are also available from the outside for external analysis or integration with various tools. Part
of the Model Reference [8] API is easily available over XML-RPC [9] and accessible in a variety
of languages (Python, Ruby, PHP, Java – author’s note).”

It is not the goal of this document to explain the API in detail, but it is worth saying that:

• It is possible to use it in a block of code or through a command line interface (CLI)
• It is accessible in a variety of languages and they are independent of the OS or the

browser, so the compatibility with other systems is granted.
• The response of the API is compatible with almost all languages/software because the

API uses a JSON data format that grants universal compatibility.

Opportunistic Odoo Settings
Odoo can be set to send an email notification to an associated email address when Odoo
receives an email for a given account. It is also possible to associate a different email address
with different email accounts. In our case, we use the first scenario. So, now we briefly describe
how to do that.

The first step is to set the Incoming Email Server with all required parameters (Figure 3).

Figure 3: Configuration of an Incoming Mail Server on Odoo.

The second step is to associate the vendor’s email address with the email address of the
incoming email server (Figure 4).

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 17 of 44

Figure 4: Configuration of Sales Channel.

The third step is optional, we can add other followers, that is other people (contacts) stored in
Odoo, regardless whether they are customers, vendors etc.

 2.2 MARKETPLACE

In comparison to the other components presented, which are reused, the Marketplace
component was newly developed for this project. The Marketplace component offers on-
demand booking for the customers. Currently it offers two features. The first one is to enable
testbed providers to register themselves and their services and the second one is to enable
customers to search and book services.

The Marketplace component is developed as a plug-in for MySlice, because it also uses the
framework React for the frontend part and therefore it is integrated with MySlice. Figure 5
shows the current version of the Marketplace component integrated in MySlice.

Currently, the Marketplace component only offers the features to search for services on the

Figure 5: MySlice integration with the Marketplace as a plug-in.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 18 of 44

start page. Further components will be added to the next prototype (see Next Steps section).
FireRabbit is the current internal project name but will be renamed to Marketplace for the next
prototype.

For the design of the pages, we use Google's Material Design [3]. Material-UI [2] implements
this design for React components and is available as open source software. That is the reason
why it is also used in the development of the Marketplace plug-in.

Figure 6: Current Start Page of the Marketplace Component.

As already mentioned, the Marketplace plug-in was developed with the React framework.
React is a JavaScript framework developed by the Facebook’s developers to build user
interfaces. It provides a template language that allows you to build simple views that React
efficiently updates as changes occur.

The framework allows the developers to define the remaining technology stack themselves, as
it does not prescribe any dependencies in this respect. Looking at the MVC model, this means
that React provides the view part but not the model or controller. For the missing components,
a pattern is used that also comes from the Facebook’s developers. It is called Flux [5] and
does not follow the MVC model to allow unidirectional data flow.

Figure 7 shows the structure and the data flow that run through the components.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 19 of 44

Figure 7: Structure and Data Flow in Flux [5].

Unidirectional data flow means that when a user interacts with a view, it transmits an action to
the store through a central dispatcher. Stores holds data of the application and update the
corresponding views in the event of a change.

The structure for the Marketplace plug-in is as follows:

Figure 8: Structure and Data Flow of the Marketplace Plug-in.

The colour coding corresponds to the previous figure. The actions have been removed from
the image to keep good readability. Since each flux-based application should only have one
dispatcher, it also has only the shop dispatcher that forwards all actions to the stores. There
are currently four stores that manage the states of different parts of the application. The shop
store is an exception, as it manages data that affects the entire application. For example, the
current theme or loaded configuration file.

If the theme changes, all views are notified and re-rendered. The other stores are limited to

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 20 of 44

individual parts, such as registering the testbed providers and their services. As with the stores,
there are several views for one area. The header view contains the logo and the menu from
which the other pages can be accessed. Search view contains the text field for the search and
all subsequent components, such as the list of results and the summary of the booking.

 2.3 ARCHITECTURE DESCRIPTION

After the subcomponents of the prototype have been presented, the architecture of the three
components is shown in this section.

Figure 9 shows how the different user groups interact with the components and how the
components themselves interact with one other. The Marketplace plug-in is part of the MySlice
component and Fed4Fire+ Offerings represent the Knowledge Graph.

Figure 9: Architecture with all Components.

 2.4 DESCRIPTION OF MATCHMAKING CAPABILITIES

For the first prototype, a hybrid version of a Semantic Web search was chosen. This approach
is presented in the paper "A Hybrid Approach for Searching in the Semantic Web" [4].

The idea is that the user starts a search with keywords, whereupon the matchmaking system
searches for these terms in the knowledge graph, which is a knowledge base, a store, first
using a traditional search engine, and then expands the list of results with a technique called

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 21 of 44

"Spread Activation". Figure 10 shows the architecture of this approach.

Figure 10: Hybrid Approach for Searching in the Semantic Web [4]

The flow starts on the left side of the user. As you can see, the user first enters his keywords
as a query. Using a traditional search engine, all entries related to these terms are listed in the
knowledge graph. Before the results are forwarded to the user, Spread Activation is used to
search the Knowledge again for results that are related to the first results list and exceed a
certain coverage level for the search terms.

Spread activation works by linking individual entries in the descriptions of the testbed services
and adding weights to these links. An algorithm for this technology works through the
knowledge graph with the results already found and selects all that activates the search
function in the knowledge graph.

Finally, the original and newly found hits are delivered or shown to the user. This approach is
thus implemented in the prototypes.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 22 of 44

 3 MANUAL

This chapter describes the operation of the prototype. The operation is separated into five
steps, based on the activities a customer goes through to book services.

1. Service Publication – It allows testbed providers to register themselves and their
services.

2. Service Selection – It provides customers the opportunity to query services and to
select them out of a list of best matches.

3. Lead Creation (Feedback) – it notifies testbed providers about requests and allows
both sides (customer and vendor) to communicate with one other.

4. Execution (Bilateral incl. Legal and Financial Aspects) – It includes the
negotiation between the customer and the testbed provider and the service
execution.

5. Conclusion – It covers the invoice creation and the payment.
The following sections describe these steps in detail and with examples. This includes how the
different components are communicating with one other and how the customers and testbed
providers can interact with the current version of the prototype.

 3.1 SERVICE PUBLICATION

If the testbed providers decide to offer their services to the customers via Fed4Fire, they must
first register themselves and then register their services. Currently, some information are
requested such as the service name, the type of company and the contact person of the
company. For the registration of services, a description, an image and the type of service must
also be specified.

The information is stored in the Knowledge Graph after the registration, so that it can be
considered in the matchmaking system. In addition, they are saved in Odoo in order to manage
easily the administrative and financial aspects.

Figure 11 shows the process for registering and updating all information and which
components are involved in this process.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 23 of 44

Figure 11: Overview of Activities for Service Publication.

As can be seen in the figure, the testbed providers use the Marketplace component to register.
The reason for that is related to two problems that arise due to the architecture and the
technologies used. About the first problem, all information about testbed providers and
services must be stored in two locations. All of that is difficult to manage for the testbed
providers.

The Marketplace solves that by offering a central point for registration and then forwarding the
information to the required points itself. The same applies to updates of the information.

The second problem comes from the use of ontologies for the presentation of information.
Testbed providers would need to know how information is presented using ontologies and how
our ontologies are structured. However, this would be an additional barrier to offering the
services of the testbed providers. That is also solved by the Marketplace component by using
a registration form. The information is then described by ontologies from the Marketplace and
forwarded to the system.

 3.1.1 Register the Testbed Provider

The following example shows how to register the testbed provider and its services in the
current prototype. The scenario is as follows:

"The Fraunhofer Institute FOKUS would like to register the FUSECO Playground Testbed. Dr.
Hermann Schmik will serve as contact person. To begin, they register the services OPC UA
Compliance Test and IIoT Consultant Alexander Willner."

In the first step, the testbed provider will be registered. To do this, go to the Register Provider
page from the menu previously presented in Figure 6.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 24 of 44

Figure 12: Registration of the FUSECO Playground Testbeds

Figure 12 shows the page with the information from the example above. After entering
information and clicking on the register button, information is distributed in the prototype.

 3.1.2 Register the Services

In the second step, the services are registered. To do this, go to the Register Service page.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 25 of 44

Figure 13: Registering the Services of FUSECO Playground

As can be seen in Figure 13, the service OPC UA Compliance Test and IIoT Consultant
Alexander Willner were entered for this testbed. information is integrated into the system after
clicking on Register, as with registering the testbed itself.

With these two steps, both the FUSECO Playground Testbed and its two services are added
to the system and can be found and booked via the search engine using proper matchmaking,
which leads to the next step in the manual.

As can be seen in Figure 14, we can add new services. For example, from the above Figure
13, OPC UA Compliance test is an application/service whereas, IIoT Consultant Alexander
Willner is both a consultant/training provider and a service. So, If the testbed provider wants
to introduce a new service, they can add it by filling the form and simply clicking ADD
SERVICE. A new service added to the One-Stop-Shop can be registered later. Therefore, the
service will be also available in the search summary.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 26 of 44

 3.2 SERVICE SELECTION

In the second step, the Service Selection, the customer can use the search field to find services
that meet their needs. For the customer to receive results that are related to his query, it must
be processed correctly in the backend. In this case, processing is handled by the matchmaking
system. The plug-in searches for all entries that match the query into the Knowledge Graph

Figure 14: Creating/Adding a new service.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 27 of 44

store and returns them to Marketplace. Figure 15 shows these steps:

Figure 15: Overview of Activities for Service Publication.

After the matchmaking system has sent the list of matches to Marketplace, the latter processes
the list into a human-readable format and displays it in a list. The customer can select the
desired services from this list. After the selection, the customer is asked to provide additional
information for his booking. This includes his idea or project and his details for any further
questions. The reason why the idea should be included is that it allows the selected testbed
provider to see what the customer is planning and, if necessary, to give an advice, such as
selecting another service. Once information has been entered and the selection posted,
information is forwarded to the backend.

 3.2.1 Query Demand

As with the Service Registration, an example shows how the steps for the Service Selection in
the current prototype look like. Since the focus here is on the customer, the scenario already
described is extended as follows:

"Smart and Medium Enterprise Solutions Inc. wants to launch its new TSN network switch on
the IIoT market. But before they do that, they want to perform tests with the switch and consult
help to find the most suitable customer market."

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 28 of 44

Figure 16: Example of the Service Selection.

First, the company calls up the Marketplace and enters "IIoT" as the search term. The
matchmaking system finds five services for the search term that match the term. Figure 16
shows the list with the appropriate services and the company selection.

The figure summarizes the search and selection, as they differ slightly. As can be seen in the
figure, three other services have been listed in addition to the FUSECO Playground services
that match the search term. As can be seen in the first service, each service has a description
and picture in order to describe what its features are.

Another matchmaking capability of the system is the possibility for the user to search only for
just a specific service, for example, he/she can write ‘test’ in the search field and can find all
the services that provides only testing facilities. Figure 17 shows a list of testing services
offered by the One-Stop-Shop.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 29 of 44

 3.2.2 Selection Summary

After selecting the desired services and clicking on Next Steps button, a summary of the
selected services is shown. The customer has the possibility to add some additional
information to the specific fields under the review section.

Figure 18 shows this summary with some additional information, ready to be sent to the testbed
providers.

Figure 17: Searching services for testing by using matchmaking.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 30 of 44

Figure 18: Request further Information after the Selection Phase.

Moreover, Lenny O'Brien was given as the person to call, so that the company can be
contacted as necessary. After clicking on the Book button, the selection with the information is
sent to the system, which will send a notification to the testbed providers.

 3.3 LEAD CREATION

This last step completes the Service selection. The following activities are described in Lead
Creation section.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 31 of 44

Figure 19: Overview of Activities for Lead Creation.

A customer books a service on market.fed4fire.eu. The vendor receives an Odoo notification
via email. He clicks on the “View Lead/Opportunity” button (Figure 20) and sign-in to Odoo
system (Figure 21).

Figure 20: Vendor’s Odoo notification email.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 32 of 44

Figure 21: Odoo Log-in Page.

Figure 22 shows a page where the vendor can send a message to the customer (Send
message button) or create an offer (New Quotation button).

Figure 22: Odoo Backend – Vendor’s RFQ view.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 33 of 44

Figure 23: Odoo Backend – Vendor’s New Quotation View.

Create a new quotation and fill in the form (Figure 23). In the case of a new customer, click on
the drop-down list and select the “create and edit” option (Figure 24) and add a new contact to
the Odoo system (Figure 25).

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 34 of 44

After a click on the “Send by email” button, the quotation will be saved automatically in the

Odoo system (Figure 26).

Figure 25: Odoo Backend – Vendor’s new Quotation View.

Figure 24: Odoo Backend – Vendor’s new Customer Contact Form.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 35 of 44

Figure 26: Odoo Backend – Vendor’s Email View.

All quotations are stored in the Odoo system, so both the customer and the vendor can view
them at any time (Figure 27).

Figure 27: Odoo Frontend – Customer’s Welcome Page.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 36 of 44

 3.4 EXECUTION

Figure 28: Overview of Activities for Execution.

After the request for quotation phase, the next steps are:

• Feedback between the customer and the vendor.
• The customer accepts the quotation.
• The quotation becomes a sale order.

 3.4.1 Feedback between Customer and Vendor

In the phase, customer and vendor/Federation can exchange messages, emails and can
modify the quotation about the type of services, quantity and costs. All is stored in Odoo
system, so both documents and messages can be read, collected and shared with other people
and printed anytime (Figure 29).

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 37 of 44

Figure 29: Odoo Frontend – Email & Message Section.

 3.4.2 Customer Accepts the Quotation

When a customer accepts a quotation, it becomes a sales order. The customer can confirm
his purchase in many ways such as wired payment, digital signature and so on so forth. The
most common method is through an online payment. The latter is the quickest and the most
secure method for both customer and vendor/Federation (Figure 30).

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 38 of 44

Figure 30: Odoo Frontend - Payment Confirmation View.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 39 of 44

 3.5 CONCLUSION

Figure 31: Overview of Activities for Conclusion.

 3.5.1 The Sales Order Becomes an Invoice

A sales order in Figure 32 is ready to become an invoice.

Figure 32: Odoo Backend – Vendor’s Sales Order View.

 3.5.2 Invoice and a Confirmation of Customer’s Payment

As noted above, the customer can confirm his order in two manners: either through a digital
signature or through an online payment. In the first case, the vendor has to check that he has
received the customer’s payment in his bank account (out of Odoo), confirm the payment
manually on Odoo, then send a payment confirmation to the customer (Figure 33). In the

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 40 of 44

second case, the payment is confirmed automatically, an online payment provider sends a
notification to the vendor and the electronic financial transaction (EFT) is done immediately.

Figure 33: Odoo Backend – Vendor’s Invoice View.

Now the customer can get his service requested (Figure 34).

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 41 of 44

Figure 34: Odoo Frontend – Customer’s Payment List Page.

 3.5.3 Evaluation

Through Odoo, External API and opportunistic settings, we can create an integration among
Marketplace, MySlice and Odoo itself. In detail, the customer books a service/product on
market.fed4fire.eu, filling in a digital form. Marketplace/MySlice system sends all data
contained in the form to Odoo, which automatically stores them in its database. Odoo sends a
notification to the vendor. Depending on what service/product the customer chooses, the
Marketplace/MySlice system sends an email to the email address associated with the
service/product selected.

For example, IIoT service is associated with the email address: sales1f4f@fed4fire.eu. The
vendor’s email address is associated with this email: vendorf4f@fed4fire.eu.

Now the customer selects IIoT service at market.fed4fire.eu, Marketplace/MySlice system
sends an email to sales1f4f@fed4fire.eu.

Odoo receives the email, creates a lead/opportunity (the step before being an RFQ) in the
associated vendor account and sends an email notification to vendor@fed4fire.eu.

The vendor gets the notification, logs in to his account (crm.fed4fire.eu) and converts the
lead/opportunity to an RFQ. The RFQ is sent to the customer.

The customer gets an email with all RFQ data. He logs in to his account (crm.fed4fire.eu) to
manage it or to simply communicate with the vendor and the business starts.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 42 of 44

 4 CONCLUSION/FUTURE WORK

By combining existing tools, it was possible to create a prototype that has already met the first
prototype requirements, i.e., only some components such as the marketplace or the
matchmaking system have been developed. The next steps are outlined below.

 4.1 MARKETPLACE

For the Marketplace component there is still a wide range of features that can be implemented.
This includes the customer and testbed provider interaction as well as communication with
some other components. The list of additional features:

• Using the Odoo’s SSO.
• Extension of the start page for users.
• Stronger integration of Odoo into the frontend.
• Further tests for the registration of testbed providers and their services.

 4.2 MATCHMAKING

As with the Marketplace, the Matchmaking System also has features that can be added to it.
Starting with the refinement of the presented architecture up to the replacement of individual
steps by more suitable methods, as for example neural networks for the determination of the
weights.

The list of additional features:

• Refinement of the current architecture in order to create an interoperable and
intelligent system.

• Replacement of individual components by more suitable methods.
• Integration of The Natural Language Processing (NLP) concept.
• Integration of neural networks for improved weight calculation of a term or words.

 4.3 MYSLICE

After initial integration of MySlice and One-Stop-Shop frontend there is a need for:

• Further integration of the frontend (One-Stop-Shop) visible to potential customers and
Odoo.

• Single accounts for the users and providers on both systems.

 4.4 ODOO

After the integration among Odoo, MySlice and the marketplace, the next step is a single sign-
on valid for all systems involved. Further future work includes:

• Creating a common graphic design for all systems involved.
• Setting the online payment methods.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 43 of 44

• Integrating Odoo with the social network.
• Improving customer account.

D4.02: First TaaS Prototype

© 2017-2021 FED4FIRE+ Consortium Page 44 of 44

 5 WORKS CITED

1. Klacza, R., Vaissade, F., Willner, A., Ahmed, Z., & Rook, J. (2017). D4.01: TaaS Gap
Analysis Report.

2. Nguyen, H., Tassinari, O., Brookes, M., Ross, K., Marks, N., Sebald, S., Crockett, T.
(n.d.). Material-UI. Retrieved from https://material-ui.com/

3. Google. (n.d.). Design - Material Design. Retrieved from https://material.io/design/
4. Rocha, C., Schwabe, D., & Poggi de Aragao, M. (2004, May). A hybrid approach for

searching in the semantic web. Proceedings of the 13th international conference on
World Wide Web.

5. Facebook Inc. (2015). Flux - In Depth Overview. Retrieved from
https://facebook.github.io/flux/docs/in-depth-overview.html#content

6. Fernandes, Joao, et al. "IoT Lab: Towards co-design and IoT solution testing using
the crowd." 2015 International Conference on Recent Advances in Internet of Things
(RIoT). IEEE, 2015.

7. Odoo Apps. Official Odoo apps store. Retrieved 10:24, November 02, 2018, from
https://apps.odoo.com/apps/browse

8. Odoo, ORM API. Official Odoo Documentation. Retrieved 10:24, November 02, 2018,
from www.odoo.com/documentation/11.0/reference/orm.html#reference-orm-model

9. "XML-RPC.” Wikipedia, The Free Encyclopedia. 16 September 2018, at 15:33(UTC).
<https://en.wikipedia.org/wiki/XML-RPC>.

